为充分利用集控中心风机(Supervisory Control and Data Acquisition,SCADA)系统采集的数据,采用智能化的机器学习算法,挖掘集控中心海量数据,提出基于机组运行状态特征参量数据挖掘和支持向量回归算法(Support Vactor Regression,SVR)...为充分利用集控中心风机(Supervisory Control and Data Acquisition,SCADA)系统采集的数据,采用智能化的机器学习算法,挖掘集控中心海量数据,提出基于机组运行状态特征参量数据挖掘和支持向量回归算法(Support Vactor Regression,SVR)结合的机组状态监测模型。该模型采用基于灰色关联度算法构建风电机组特征参量,然后建立SVR数据模型,模型以机组功率、叶轮转速、桨距角为输出向量,特征参量为模型的输入向量,采用遗传算法结合交叉验证方法对SVR模型参数寻优,并对距离阈值进行分析。最后,将模型应用于某实际风场,验证了该模型的可行性和有效性。展开更多
文摘为充分利用集控中心风机(Supervisory Control and Data Acquisition,SCADA)系统采集的数据,采用智能化的机器学习算法,挖掘集控中心海量数据,提出基于机组运行状态特征参量数据挖掘和支持向量回归算法(Support Vactor Regression,SVR)结合的机组状态监测模型。该模型采用基于灰色关联度算法构建风电机组特征参量,然后建立SVR数据模型,模型以机组功率、叶轮转速、桨距角为输出向量,特征参量为模型的输入向量,采用遗传算法结合交叉验证方法对SVR模型参数寻优,并对距离阈值进行分析。最后,将模型应用于某实际风场,验证了该模型的可行性和有效性。