-
题名基于LightGBM的犯罪类型预测模型研究
被引量:2
- 1
-
-
作者
钱芳慧
蔡竞
-
机构
浙江警察学院刑事科学技术系
浙江警察学院教务处
基于大数据架构的公安信息化应用公安部重点实验室
-
出处
《计算机仿真》
北大核心
2023年第1期25-30,共6页
-
基金
国家重点研发计划(2017YFC0803703)
国家级大学生创新创业训练计划项目(201911483011)。
-
文摘
深入挖掘犯罪类型发生的规律,有效进行犯罪活动的预防。基于轻量级梯度提升机算法,对犯罪数据集进行数据清洗整合等预处理,再对犯罪数据时空序列进行分析并提取犯罪数据特征,最后对特征进行编码,构建犯罪类型预测模型。针对中国某市及美国旧金山犯罪数据集的犯罪类型预测结果表明,较随机森林、朴素贝叶斯、逻辑回归算法,其预测准确率最高分别高出5%、10%、12%。但特征维度有限,未能对犯罪案件进行更全面刻画。将时空信息作为特征向量,基于轻量级梯度提升机算法的模型能够进行较为准确高效的犯罪类型预测。
-
关键词
犯罪类型
犯罪预测模型
犯罪特征分析
轻量级梯度提升机
-
Keywords
Crime type
Crime prediction model
Crime data analysis
Light gradient boosting machine
-
分类号
TP391.9
[自动化与计算机技术—计算机应用技术]
-