为了增加煤层透气性、提高瓦斯抽采效率,选取七台河矿区进行液态CO2爆破煤层增透工业试验。研究液态CO2爆破过程中主管内高压气体P-T曲线,考察不同地应力下的液态CO2爆破有效影响半径和煤层透气性系数,监测爆破前后瓦斯抽采参数。试验...为了增加煤层透气性、提高瓦斯抽采效率,选取七台河矿区进行液态CO2爆破煤层增透工业试验。研究液态CO2爆破过程中主管内高压气体P-T曲线,考察不同地应力下的液态CO2爆破有效影响半径和煤层透气性系数,监测爆破前后瓦斯抽采参数。试验结果表明:采用压缩气体与水蒸气容器爆破方法计算液态CO2爆破的当量为180 g TNT;爆破后瓦斯抽采浓度提高3.16倍,瓦斯抽采混合流量提高1.71倍;煤层液态CO2爆破有效影响半径随地应力的增加近线性减小,随爆破压力的增加非线性增加,确定液态CO2爆破时最佳爆破压力范围160-280 MPa;爆破前后对比,煤层透气性系数提升17.49-22.76倍。井下煤层液态CO2爆破技术的实施,有助于降低爆破成本、提高增透效果和瓦斯抽采利用率。展开更多
文摘为了增加煤层透气性、提高瓦斯抽采效率,选取七台河矿区进行液态CO2爆破煤层增透工业试验。研究液态CO2爆破过程中主管内高压气体P-T曲线,考察不同地应力下的液态CO2爆破有效影响半径和煤层透气性系数,监测爆破前后瓦斯抽采参数。试验结果表明:采用压缩气体与水蒸气容器爆破方法计算液态CO2爆破的当量为180 g TNT;爆破后瓦斯抽采浓度提高3.16倍,瓦斯抽采混合流量提高1.71倍;煤层液态CO2爆破有效影响半径随地应力的增加近线性减小,随爆破压力的增加非线性增加,确定液态CO2爆破时最佳爆破压力范围160-280 MPa;爆破前后对比,煤层透气性系数提升17.49-22.76倍。井下煤层液态CO2爆破技术的实施,有助于降低爆破成本、提高增透效果和瓦斯抽采利用率。