The energy loss effect of incoming gluons from J/ψ production in p-A(or d-A) collisions is investigated by means of the E866, RHIC and LHC experimental data. The gluon mean energy loss per unit path length d E/d L ...The energy loss effect of incoming gluons from J/ψ production in p-A(or d-A) collisions is investigated by means of the E866, RHIC and LHC experimental data. The gluon mean energy loss per unit path length d E/d L = 2.18 ± 0.14 Ge V/fm is extracted by fitting the E866 experimental data for J/ψ production cross section ratios R W(Fe)/Be(x F). The obtained result indicates that the incoming gluons lose more energy than the incident quarks. By comparing the theoretical results with E866, RHIC, and LHC experimental data, it is found that the nuclear suppression due to the incident gluon(quark) energy loss reduces(increases) with the increase of the kinematic variable x F(or y). The energy loss effect of incoming gluons plays an important role in the suppression of J/ψ production in a wide energy range from√s = 38.7 Ge V to√s = 5.0 Te V, and the influence of incident quark energy loss can be ignored for high energies(such as at RHIC and LHC energy).展开更多
The energy loss effects of the incident quark, gluon, and the color octet cc on J/ψ, suppression in p-A collisions are studied by means of the experimental data at E866, RHIC, and LHC energy. We extracted the transpo...The energy loss effects of the incident quark, gluon, and the color octet cc on J/ψ, suppression in p-A collisions are studied by means of the experimental data at E866, RHIC, and LHC energy. We extracted the transport coefficient for gluon energy loss from the E866 experimental data in the middle XF region (0.20 〈 XF 〈 0.65) based on the Salgado-Wiedemann (SW) quenching weights and the recent EPPS16 nuclear parton distribution functions together with nCTEQ15. It was determined that the difference between the values of the transport coefficient for light quark, gluon, and heavy quark in cold nuclear matter is very small. The theoretical results modified by the patton energy loss effects are consistent with the experimental data for E866 and RHIC energy, and the gluon energy loss plays a remarkable role on J/ψ suppression in a broad variable range. Because the corrections of the nuclear patton distribution functions in the J/ψ channel are significant at LHC energy level, the nuclear modification due to the parton energy loss is minimal. It is worth noting that we use the color evaporation model (CEM) at leading order to compute the p-p baseline, and the conclusion in this paper is CEM model dependent.展开更多
基金Supported by National Natural Science Foundation of China(11405043,11575052)
文摘The energy loss effect of incoming gluons from J/ψ production in p-A(or d-A) collisions is investigated by means of the E866, RHIC and LHC experimental data. The gluon mean energy loss per unit path length d E/d L = 2.18 ± 0.14 Ge V/fm is extracted by fitting the E866 experimental data for J/ψ production cross section ratios R W(Fe)/Be(x F). The obtained result indicates that the incoming gluons lose more energy than the incident quarks. By comparing the theoretical results with E866, RHIC, and LHC experimental data, it is found that the nuclear suppression due to the incident gluon(quark) energy loss reduces(increases) with the increase of the kinematic variable x F(or y). The energy loss effect of incoming gluons plays an important role in the suppression of J/ψ production in a wide energy range from√s = 38.7 Ge V to√s = 5.0 Te V, and the influence of incident quark energy loss can be ignored for high energies(such as at RHIC and LHC energy).
基金Supported by National Natural Science Foundation of China(11405043)Natural Science Foundation of Hebei Province(A2018209269)
文摘The energy loss effects of the incident quark, gluon, and the color octet cc on J/ψ, suppression in p-A collisions are studied by means of the experimental data at E866, RHIC, and LHC energy. We extracted the transport coefficient for gluon energy loss from the E866 experimental data in the middle XF region (0.20 〈 XF 〈 0.65) based on the Salgado-Wiedemann (SW) quenching weights and the recent EPPS16 nuclear parton distribution functions together with nCTEQ15. It was determined that the difference between the values of the transport coefficient for light quark, gluon, and heavy quark in cold nuclear matter is very small. The theoretical results modified by the patton energy loss effects are consistent with the experimental data for E866 and RHIC energy, and the gluon energy loss plays a remarkable role on J/ψ suppression in a broad variable range. Because the corrections of the nuclear patton distribution functions in the J/ψ channel are significant at LHC energy level, the nuclear modification due to the parton energy loss is minimal. It is worth noting that we use the color evaporation model (CEM) at leading order to compute the p-p baseline, and the conclusion in this paper is CEM model dependent.