薄膜晶体管(Thin film transistor,TFT)的栅极在截面方向上是一个台阶,栅极绝缘层(Gate Insulator,GI)和源漏极(Source和Data电极,SD电极)依次覆盖于台阶之上,覆盖程度以台阶覆盖率(台阶处GI层水平厚度与竖直厚度的比值)进行衡量。本文...薄膜晶体管(Thin film transistor,TFT)的栅极在截面方向上是一个台阶,栅极绝缘层(Gate Insulator,GI)和源漏极(Source和Data电极,SD电极)依次覆盖于台阶之上,覆盖程度以台阶覆盖率(台阶处GI层水平厚度与竖直厚度的比值)进行衡量。本文结合重庆京东方的HADS产品工艺制程,探究了栅极厚度、坡度角对GI层的台阶覆盖率的影响。同时,在覆盖率的基础上研究了台阶处和非台阶处的SD膜层刻蚀程度差异。结合量产中的不良,分析栅极坡度角、覆盖率、栅极腐蚀等相关不良的关系,并提出相应的良率提升措施。实验结果表明坡度角是影响GI覆盖率的关键因素,且栅极坡度角与GI覆盖率呈负线性关系。当栅极厚度在280~500 nm范围变化时,栅极坡度角每增加10°,GI层台阶覆盖率下降约20%。SD膜层覆盖在台阶上,因台阶的存在造成此处的SD层减薄,最终导致该处的SD膜层刻蚀程度加大。如果栅极坡度角偏大,会导致台阶处GI层减薄或者产生微裂纹,工艺制程中的腐蚀介质会透过减薄的GI层进而腐蚀栅极;此外,偏大的栅极坡度角会导致台阶处的SD电极有断线的风险。通过刻蚀液种类变更、刻蚀液成分微调、刻蚀工艺的优化可以降低栅极坡度角,规避上述良率风险。此外,对于栅极腐蚀型不良,也可以通过调整GI层的成膜参数来提升覆盖率。对于SD电极断线风险,可尝试增加光刻胶粘附力、台阶处SD线加宽等措施规避风险。展开更多
在薄膜晶体管(Thin film transistor,TFT)的公共电极制程中,有部分TFT样品的漏电流(I_(off))异常偏高,该部分样品经历同一个光刻胶剥离设备,导致该设备暂停流片,造成产能损失。明确该剥离设备造成TFT漏电流偏高的原因并予以解决,对产能...在薄膜晶体管(Thin film transistor,TFT)的公共电极制程中,有部分TFT样品的漏电流(I_(off))异常偏高,该部分样品经历同一个光刻胶剥离设备,导致该设备暂停流片,造成产能损失。明确该剥离设备造成TFT漏电流偏高的原因并予以解决,对产能和品质确保具有积极意义。本文首先收集了异常设备剥离液和正常设备的剥离液并分析成分,发现异常设备的剥离液中Al离子含量高。其次,发现TFT的I_(off)会随着在异常设备流片次数的增加而上升。其原因是Al离子在剥离制程生成Al_(2)O_(3)颗粒,该颗粒附着在TFT器件钝化层上形成寄生栅极效应,最终造成I_(off)增加。最后,结合TRIZ输出解决方案,并优选方案进行改善验证。实验结果表明,剥离液中的Al离子浓度由1×10^(-8)上升到2.189×10^(-6)时,I_(off)由3.56 pA上升到7.56 pA。当剥离液中含有Al离子,经历的剥离次数增加时,I_(off)呈上升趋势。钝化层成膜前的等离子体处理功率增强、钝化层膜厚增加可以抑制I_(off)增加。由此,可以确定剥离设备造成I_(off)偏高的原因是剥离液中的Al离子形成的寄生栅极效应,钝化层成膜前处理强化和膜厚增加均可以抑制该效应。展开更多
文摘薄膜晶体管(Thin film transistor,TFT)的栅极在截面方向上是一个台阶,栅极绝缘层(Gate Insulator,GI)和源漏极(Source和Data电极,SD电极)依次覆盖于台阶之上,覆盖程度以台阶覆盖率(台阶处GI层水平厚度与竖直厚度的比值)进行衡量。本文结合重庆京东方的HADS产品工艺制程,探究了栅极厚度、坡度角对GI层的台阶覆盖率的影响。同时,在覆盖率的基础上研究了台阶处和非台阶处的SD膜层刻蚀程度差异。结合量产中的不良,分析栅极坡度角、覆盖率、栅极腐蚀等相关不良的关系,并提出相应的良率提升措施。实验结果表明坡度角是影响GI覆盖率的关键因素,且栅极坡度角与GI覆盖率呈负线性关系。当栅极厚度在280~500 nm范围变化时,栅极坡度角每增加10°,GI层台阶覆盖率下降约20%。SD膜层覆盖在台阶上,因台阶的存在造成此处的SD层减薄,最终导致该处的SD膜层刻蚀程度加大。如果栅极坡度角偏大,会导致台阶处GI层减薄或者产生微裂纹,工艺制程中的腐蚀介质会透过减薄的GI层进而腐蚀栅极;此外,偏大的栅极坡度角会导致台阶处的SD电极有断线的风险。通过刻蚀液种类变更、刻蚀液成分微调、刻蚀工艺的优化可以降低栅极坡度角,规避上述良率风险。此外,对于栅极腐蚀型不良,也可以通过调整GI层的成膜参数来提升覆盖率。对于SD电极断线风险,可尝试增加光刻胶粘附力、台阶处SD线加宽等措施规避风险。
文摘在薄膜晶体管(Thin film transistor,TFT)的公共电极制程中,有部分TFT样品的漏电流(I_(off))异常偏高,该部分样品经历同一个光刻胶剥离设备,导致该设备暂停流片,造成产能损失。明确该剥离设备造成TFT漏电流偏高的原因并予以解决,对产能和品质确保具有积极意义。本文首先收集了异常设备剥离液和正常设备的剥离液并分析成分,发现异常设备的剥离液中Al离子含量高。其次,发现TFT的I_(off)会随着在异常设备流片次数的增加而上升。其原因是Al离子在剥离制程生成Al_(2)O_(3)颗粒,该颗粒附着在TFT器件钝化层上形成寄生栅极效应,最终造成I_(off)增加。最后,结合TRIZ输出解决方案,并优选方案进行改善验证。实验结果表明,剥离液中的Al离子浓度由1×10^(-8)上升到2.189×10^(-6)时,I_(off)由3.56 pA上升到7.56 pA。当剥离液中含有Al离子,经历的剥离次数增加时,I_(off)呈上升趋势。钝化层成膜前的等离子体处理功率增强、钝化层膜厚增加可以抑制I_(off)增加。由此,可以确定剥离设备造成I_(off)偏高的原因是剥离液中的Al离子形成的寄生栅极效应,钝化层成膜前处理强化和膜厚增加均可以抑制该效应。