期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
多示例学习的两阶段实例选择和自适应包映射算法
被引量:
2
1
作者
杨梅
曾雯喜
+1 位作者
方宇
闽帆
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第1期94-102,共9页
多示例学习(Multi-Instance Learning,MIL)研究对象的内部结构比单示例学习更加复杂.已有的MIL方法大都基于原始空间中的实例进行包映射,但这些方法通常忽略包的内部结构信息,难以保证所选实例与包在新特征空间中的关联性.提出一种多示...
多示例学习(Multi-Instance Learning,MIL)研究对象的内部结构比单示例学习更加复杂.已有的MIL方法大都基于原始空间中的实例进行包映射,但这些方法通常忽略包的内部结构信息,难以保证所选实例与包在新特征空间中的关联性.提出一种多示例学习的两阶段实例选择和自适应包映射(TAMI)算法.首先,实例选择技术根据包中实例的密度值和关联性,挖掘包内结构特征,选取实例原型;其次,实例选择技术选取具有峰值密度的实例原型作为代表实例;最后,自适应包映射技术通过定义新的映射函数将包转换为单向量进行学习.实验利用显著性检验从统计学的角度验证了TAMI在图像检索、文本分类等基本数据集上的有效性.结果表明,TAMI在图像检索和医学图像数据集上取得了比其他MIL算法更好的效果,并在文本分类数据集上表现良好.
展开更多
关键词
自适应映射
关联性
密度
实例选择
多示例学习
下载PDF
职称材料
题名
多示例学习的两阶段实例选择和自适应包映射算法
被引量:
2
1
作者
杨梅
曾雯喜
方宇
闽帆
机构
西南石油大学计算机科学学院
西南石油大学人工智能研究院
出处
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第1期94-102,共9页
基金
国家自然科学基金(62006200)
四川省自然科学基金(2019YJ0314)
+1 种基金
四川省青年科学技术创新团队(2019JDTD0017)
西南石油大学研究生全英文课程建设项目(2020QY04)。
文摘
多示例学习(Multi-Instance Learning,MIL)研究对象的内部结构比单示例学习更加复杂.已有的MIL方法大都基于原始空间中的实例进行包映射,但这些方法通常忽略包的内部结构信息,难以保证所选实例与包在新特征空间中的关联性.提出一种多示例学习的两阶段实例选择和自适应包映射(TAMI)算法.首先,实例选择技术根据包中实例的密度值和关联性,挖掘包内结构特征,选取实例原型;其次,实例选择技术选取具有峰值密度的实例原型作为代表实例;最后,自适应包映射技术通过定义新的映射函数将包转换为单向量进行学习.实验利用显著性检验从统计学的角度验证了TAMI在图像检索、文本分类等基本数据集上的有效性.结果表明,TAMI在图像检索和医学图像数据集上取得了比其他MIL算法更好的效果,并在文本分类数据集上表现良好.
关键词
自适应映射
关联性
密度
实例选择
多示例学习
Keywords
adaptive mapping
affinity
density
instance selection
multi-instance learning
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
多示例学习的两阶段实例选择和自适应包映射算法
杨梅
曾雯喜
方宇
闽帆
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2022
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部