期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improved photovoltaic effects in Mn-doped BiFeO3 ferroelectric thin films through band gap engineering
1
作者 阎堂柳 陈斌 +7 位作者 刘钢 牛瑞鹏 尚杰 高双 薛武红 金晶 杨九如 李润伟 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期401-405,共5页
As a low-bandgap ferroelectric material, BiFeO3 has gained wide attention for the potential photovoltaic applications,since its photovoltaic effect in visible light range was reported in 2009. In the present work, Bi... As a low-bandgap ferroelectric material, BiFeO3 has gained wide attention for the potential photovoltaic applications,since its photovoltaic effect in visible light range was reported in 2009. In the present work, Bi(Fe, Mn)O3thin films are fabricated by pulsed laser deposition method, and the effects of Mn doping on the microstructure, optical, leakage,ferroelectric and photovoltaic characteristics of Bi(Fe, Mn)O3 thin films are systematically investigated. The x-ray diffraction data indicate that Bi(Fe, Mn)O3 thin films each have a rhombohedrally distorted perovskite structure. From the light absorption results, it follows that the band gap of Bi(Fe, Mn)O3 thin films can be tuned by doping different amounts of Mn content. More importantly, photovoltaic measurement demonstrates that the short-circuit photocurrent density and the open-circuit voltage can both be remarkably improved through doping an appropriate amount of Mn content, leading to the fascinating fact that the maximum power output of ITO/BiFe(0.7)Mn(0.3)O3/Nb-STO capacitor is about 175 times higher than that of ITO/BiFeO3/Nb-STO capacitor. The improvement of photovoltaic response in Bi(Fe, Mn)O3 thin film can be reasonably explained as being due to absorbing more visible light through bandgap engineering and maintaining the ferroelectric property at the same time. 展开更多
关键词 band gap engineering BIFEO3 Mn doping FERROELECTRIC photovoltaic effect
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部