期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MapReduce框架下基于抽样的分布式K-Means聚类算法 被引量:6
1
作者 杨杰明 吴启龙 +3 位作者 曲朝阳 杨烁 阚中峰 高冶 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第1期109-115,共7页
提出一种MapReduce框架下基于抽样的分布式K-Means聚类算法,解决海量数据环境下并行执行K-Means算法时,时间开销较大的问题.该算法使用抽样方法,在保证数据分布不变的前提下,对数据集的规模进行约减,并在MapReduce框架下对聚类算法进行... 提出一种MapReduce框架下基于抽样的分布式K-Means聚类算法,解决海量数据环境下并行执行K-Means算法时,时间开销较大的问题.该算法使用抽样方法,在保证数据分布不变的前提下,对数据集的规模进行约减,并在MapReduce框架下对聚类算法进行优化.实验结果表明,该算法在保持良好聚类效果的同时,能有效缩短聚类时间,对大规模数据集具有较高的执行效率和较好的可扩展性. 展开更多
关键词 抽样 MAPREDUCE 分布式计算 K-MEANS聚类算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部