期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种Haar-like和HOG特征结合的交通视频车辆识别方法研究 被引量:10
1
作者 董天阳 阮体洪 +1 位作者 吴佳敏 范菁 《浙江工业大学学报》 CAS 北大核心 2015年第5期503-507,共5页
由于前向和后向车辆的表观特征不同,单纯使用主流的HOG或者Haar-like特征来识别车辆会存在对某一方向行驶的车辆识别率低或者误识率高的问题.针对上述问题,提出了一种Haarlike和HOG特征结合的交通视频车辆识别方法.在训练阶段,对前后向... 由于前向和后向车辆的表观特征不同,单纯使用主流的HOG或者Haar-like特征来识别车辆会存在对某一方向行驶的车辆识别率低或者误识率高的问题.针对上述问题,提出了一种Haarlike和HOG特征结合的交通视频车辆识别方法.在训练阶段,对前后向车辆分别采用Haar-like和HOG特征来提取车辆特征,引入反馈式的AdaBoost算法训练车辆分类器,提高车辆识别的速度以及准确率;在识别阶段,根据车辆运行状态确定前后向车辆,再利用对应的车辆分类器进行多尺度遍历识别.在不同光照强度的高速公路视频中进行车辆识别实验,前后车辆的平均识别率达到93%,误识别为9%. 展开更多
关键词 特征结合 前后向车辆识别 HOG Haar-like ADABOOST
下载PDF
基于二次谱聚类和HMM-RF混合模型的车辆行为识别方法研究 被引量:8
2
作者 范菁 阮体洪 +1 位作者 吴佳敏 董天阳 《计算机科学》 CSCD 北大核心 2016年第5期288-293,共6页
从高速交通监控视频中提取的车辆轨迹数据可以用于分析和识别车辆行为。由于从高速监控视频中提取的车辆轨迹中只有少量的变道、超车等类型轨迹,采用经典的最长公共子串(LCSS)相似度和谱聚类等算法无法有效地区分轨迹数据中所有类型的轨... 从高速交通监控视频中提取的车辆轨迹数据可以用于分析和识别车辆行为。由于从高速监控视频中提取的车辆轨迹中只有少量的变道、超车等类型轨迹,采用经典的最长公共子串(LCSS)相似度和谱聚类等算法无法有效地区分轨迹数据中所有类型的轨迹;此外,在车辆行为识别方面,常用的隐马尔科夫(HMM)轨迹模型忽略了负样本的影响,且仅用最大似然值进行分类,存在较高的误识别率。为了解决这些问题,分析和研究了高速监控视频中车辆轨迹数据的特点,提出了一种基于二次谱聚类和HMM-RF混合模型的车辆行为识别方法。该方法利用轨迹曲率来识别具有曲线轨迹特征的超车轨迹,利用倾角相似度和谱聚类算法来识别非曲线轨迹中的变道轨迹,并将得到的所有聚类簇用LCSS和谱聚类算法进行再聚类,从而有效地区分超车、变道以及直行轨迹等。在进行车辆行为识别时,该方法通过将不同HMM模型的多维概率输出作为随机森林RF模型的输入来识别多类型轨迹以替代最大似然值分类,提高了行为识别的正确率。为了验证方法的有效性,在不同数据集下进行实验,结果表明轨迹聚类的平均准确率为96%,而行为识别的平均准确率是89.3%,算法具有较高的准确率和鲁棒性。 展开更多
关键词 轨迹聚类 车辆行为识别 二次谱聚类 HMM-RF混合模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部