期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于层次化表示的隐式篇章关系识别
被引量:
1
1
作者
徐扬
周文瑄
+2 位作者
阮慧彬
孙雨
洪宇
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第6期1000-1009,共10页
篇章关系识别研究旨在理解篇章内部论述单元(简称"论元",包括短语、句子及文本片段)之间的语义连接关系.现有研究通过交互式注意力机制方法,提升论元之间的信息的交互性,从而提升模型的分类能力.尽管如此,仅通过提升论元间的...
篇章关系识别研究旨在理解篇章内部论述单元(简称"论元",包括短语、句子及文本片段)之间的语义连接关系.现有研究通过交互式注意力机制方法,提升论元之间的信息的交互性,从而提升模型的分类能力.尽管如此,仅通过提升论元间的信息交互不能表述论元对的整体语义概念,原因在于现有方法往往将论元对视作独立的个体,忽略上下文信息对其语义上的影响.针对以上问题,提出一种基于层次化表示的隐式篇章关系识别方法,通过基于词的交互式注意力机制提取出较为重要的单词或短语,并通过论元的注意力机制赋予关键论元较高的权重,最终通过基于上下文的注意力机制融合论元对所在段落的信息,获得具有上下文语义信息的论元对表示.该方法进一步强化了论元之间信息交互性,同时强化了论元对与上下文信息间的交互.使用PDTB(Penn Discourse Treebank)语料进行实验,结果证明该方法的F1值在四个大类关系(Comparison,Contingency,Expansion,Temporal)上相对基准系统提高了4.94%,5.43%,4.57%和7.42%.
展开更多
关键词
篇章关系识别
注意力机制
信息交互
上下文信息
下载PDF
职称材料
基于图卷积神经网络的隐式篇章关系识别
2
作者
阮慧彬
孙雨
+3 位作者
洪宇
吴成豪
李晓
周国栋
《中文信息学报》
CSCD
北大核心
2021年第8期28-37,共10页
隐式篇章关系识别是篇章关系识别的子任务,其挑战性在于难以学习到具有丰富语义信息和交互信息的论元表示。针对这一难点,该文提出一种基于图卷积神经网络(Graph Convolutional Network,GCN)的隐式篇章关系分类方法。该方法采用预训练...
隐式篇章关系识别是篇章关系识别的子任务,其挑战性在于难以学习到具有丰富语义信息和交互信息的论元表示。针对这一难点,该文提出一种基于图卷积神经网络(Graph Convolutional Network,GCN)的隐式篇章关系分类方法。该方法采用预训练语言模型BERT(Bidirectional Encoder Representation from Transformers)编码论元以获取论元表示,再分别拼接论元表示和注意力分数矩阵作为特征矩阵和邻接矩阵,构造基于图卷积神经网络的分类模型,从而根据论元自身信息以及交互信息对论元表示进行调整,以得到有助于隐式篇章关系识别的论元表示。该文利用宾州篇章树库(Penn Discourse Treebank,PDTB)语料进行实验,实验结果表明,该方法在四大类关系上分类性能优于基准模型BERT,且其在偶然(Contingency)关系和扩展(Expansion)关系上优于目前先进模型,F1值分别达到60.70%和74.49%。
展开更多
关键词
隐式篇章关系识别
图卷积神经网络
自注意力机制
交互式注意力机制
下载PDF
职称材料
题名
基于层次化表示的隐式篇章关系识别
被引量:
1
1
作者
徐扬
周文瑄
阮慧彬
孙雨
洪宇
机构
苏州大学计算机科学与技术学院
出处
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第6期1000-1009,共10页
基金
国家自然科学基金(61672368,61672367)
江苏高校优势学科建设工程
文摘
篇章关系识别研究旨在理解篇章内部论述单元(简称"论元",包括短语、句子及文本片段)之间的语义连接关系.现有研究通过交互式注意力机制方法,提升论元之间的信息的交互性,从而提升模型的分类能力.尽管如此,仅通过提升论元间的信息交互不能表述论元对的整体语义概念,原因在于现有方法往往将论元对视作独立的个体,忽略上下文信息对其语义上的影响.针对以上问题,提出一种基于层次化表示的隐式篇章关系识别方法,通过基于词的交互式注意力机制提取出较为重要的单词或短语,并通过论元的注意力机制赋予关键论元较高的权重,最终通过基于上下文的注意力机制融合论元对所在段落的信息,获得具有上下文语义信息的论元对表示.该方法进一步强化了论元之间信息交互性,同时强化了论元对与上下文信息间的交互.使用PDTB(Penn Discourse Treebank)语料进行实验,结果证明该方法的F1值在四个大类关系(Comparison,Contingency,Expansion,Temporal)上相对基准系统提高了4.94%,5.43%,4.57%和7.42%.
关键词
篇章关系识别
注意力机制
信息交互
上下文信息
Keywords
discourse relation recognition
attention mechanism
information interaction
context-aware information
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于图卷积神经网络的隐式篇章关系识别
2
作者
阮慧彬
孙雨
洪宇
吴成豪
李晓
周国栋
机构
苏州大学计算机科学与技术学院
出处
《中文信息学报》
CSCD
北大核心
2021年第8期28-37,共10页
基金
国家自然科学基金(61672368,61751206,61703293)
文摘
隐式篇章关系识别是篇章关系识别的子任务,其挑战性在于难以学习到具有丰富语义信息和交互信息的论元表示。针对这一难点,该文提出一种基于图卷积神经网络(Graph Convolutional Network,GCN)的隐式篇章关系分类方法。该方法采用预训练语言模型BERT(Bidirectional Encoder Representation from Transformers)编码论元以获取论元表示,再分别拼接论元表示和注意力分数矩阵作为特征矩阵和邻接矩阵,构造基于图卷积神经网络的分类模型,从而根据论元自身信息以及交互信息对论元表示进行调整,以得到有助于隐式篇章关系识别的论元表示。该文利用宾州篇章树库(Penn Discourse Treebank,PDTB)语料进行实验,实验结果表明,该方法在四大类关系上分类性能优于基准模型BERT,且其在偶然(Contingency)关系和扩展(Expansion)关系上优于目前先进模型,F1值分别达到60.70%和74.49%。
关键词
隐式篇章关系识别
图卷积神经网络
自注意力机制
交互式注意力机制
Keywords
implicit discourse relation recognition
graph convolutional network
self-attention mechanism
inter-attention mechanism
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于层次化表示的隐式篇章关系识别
徐扬
周文瑄
阮慧彬
孙雨
洪宇
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2019
1
下载PDF
职称材料
2
基于图卷积神经网络的隐式篇章关系识别
阮慧彬
孙雨
洪宇
吴成豪
李晓
周国栋
《中文信息学报》
CSCD
北大核心
2021
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部