本文针对灰狼优化(Grey Wolf Optimizer,GWO)算法平衡全局探索和局部搜索能力的不足,提出了一种基于反向改进的灰狼算法(Opposition Learning Grey Wolf Optimizer,OLGWO),来优化预测模型的超参数,以提高其用于交通流预测的精度与鲁棒性...本文针对灰狼优化(Grey Wolf Optimizer,GWO)算法平衡全局探索和局部搜索能力的不足,提出了一种基于反向改进的灰狼算法(Opposition Learning Grey Wolf Optimizer,OLGWO),来优化预测模型的超参数,以提高其用于交通流预测的精度与鲁棒性.本算法在迭代过程中采用了反向学习策略,并引入了等级相关概念,主要通过计算普通狼与目标狼的Spearman相关系数,并根据其值来选择性地更新狼种群.实验先对12个标准测试函数对比了四种算法OLGWO、TGWO(Transformed Grey Wolf Optimizer)、GWO、PSO(Particle Swarm Optimization),得到了寻优均值和标准差,验证了OLGWO算法具有突出的性能优势;然后采用美国加州公路交通流数据,在不同缺失率下比较了四种算法优化的反向传播(Back Propagation,BP)网络模型,结果显示,OLGWO-BP模型预测精度比其它三种模型最高分别有1.95%、3.98%和11.07%的提升,同时表现出更好的稳定性.展开更多
文摘本文针对灰狼优化(Grey Wolf Optimizer,GWO)算法平衡全局探索和局部搜索能力的不足,提出了一种基于反向改进的灰狼算法(Opposition Learning Grey Wolf Optimizer,OLGWO),来优化预测模型的超参数,以提高其用于交通流预测的精度与鲁棒性.本算法在迭代过程中采用了反向学习策略,并引入了等级相关概念,主要通过计算普通狼与目标狼的Spearman相关系数,并根据其值来选择性地更新狼种群.实验先对12个标准测试函数对比了四种算法OLGWO、TGWO(Transformed Grey Wolf Optimizer)、GWO、PSO(Particle Swarm Optimization),得到了寻优均值和标准差,验证了OLGWO算法具有突出的性能优势;然后采用美国加州公路交通流数据,在不同缺失率下比较了四种算法优化的反向传播(Back Propagation,BP)网络模型,结果显示,OLGWO-BP模型预测精度比其它三种模型最高分别有1.95%、3.98%和11.07%的提升,同时表现出更好的稳定性.