Bi2WO6 is a typical visible-light-responsive semiconductor photocatalyst with a layered structure.However,the relatively large bandgap(2.6–2.8 eV)and quick recombination of photo-generated carriers result in its low ...Bi2WO6 is a typical visible-light-responsive semiconductor photocatalyst with a layered structure.However,the relatively large bandgap(2.6–2.8 eV)and quick recombination of photo-generated carriers result in its low quantum efficiency.In this paper,Bi-nanospheres-modified flower-like Bi2WO6 was successfully prepared by solvothermal treatment of Bi2WO6 powders in Bi(NO3)3 solution using ethylene glycol as reductant.The photoreactivity of this photocatalyst was evaluated by the oxidation of NO in a continuous-flow reactor under irradiation by a visible LED lamp(λ>400 nm).It was found that both Bi nanospheres and flower-like Bi2WO6 precursor exhibit very poor photocatalytic activity with NO removal rates of only 7.7%and 8.6%,respectively.The photoreactivity of Bi/Bi2WO6 was found to steadily increase from 12.3%to 53.1%with increase in the amount of Bi nanospheres from 0 to 10 wt%.However,with further increase in the loading amount of Bi nanospheres,the photoreactivity of Bi/Bi2WO6 hybridized photocatalyst begins to decrease,possibly due to the light filtering by the Bi nanospheres.The enhanced visible photoreactivity of Bi/Bi2WO6 towards NO abatement was attributed to surface plasmon resonance driven interfacial charge separation.The excellent stability of Bi/Bi2WO6 hybridized photocatalyst towards NO oxidation demonstrates its potential for applications such as air purification.展开更多
Hierarchically structured nanomaterials have attracted much attention owing to their unique properties.In this study,TiO2 nanofibers assembled from nanosheets(TiO2-NFs-NSs)were fabricated through electrospinning techn...Hierarchically structured nanomaterials have attracted much attention owing to their unique properties.In this study,TiO2 nanofibers assembled from nanosheets(TiO2-NFs-NSs)were fabricated through electrospinning technique,which was followed by hydrothermal treatment in NaOH solution.The effect of hydrothermal reaction time(0-3 h)on the structure and properties of TiO2 nanofibers(TiO2-NFs)was systematically studied,and TiO2-NFs was evaluated in terms of the photocatalytic activity toward photocatalytic oxidation of acetone and the photoelectric conversion efficiency of dye-sensitized solar cells.It was found that(1)hydrothermal treatment of TiO2-NFs in NaOH solution followed by acid washing and calcination results in the formation of TiO2-NFs-NSs;(2)upon extending the hydrothermal reaction time from 0 h to 3 h,the BET surface area of TiO2-NFs-NSs(T3.0 sample)increases 3.8 times(from 28 to 106 m2 g^-1),while the pore volume increases 6.0 times(from 0.09 to 0.54 cm3 g^-1);(3)when compared with those of pristine TiO2-NFs(T0 sample),the photoreactivity of the optimized TiO2-NFs-NSs toward acetone oxidation increases 3.1 times and the photoelectric conversion efficiency increases 2.3 times.The enhanced photoreactivity of TiO2-NFs-NSs is attributed to the enlarged BET surface area and increased pore volume,which facilitate the adsorption of substrate and penetration of gas,and the unique hollow structure of TiO2-NFs-NSs,which facilitates light harvesting through multiple optical reflections between the TiO2 nanosheets.展开更多
基金supported by the National Natural Science Foundation of China(51672312,21373275,51808080,21571192)the Fundamental Research Funds for the Central Univsrsity,South-Central University for Nationalities(CZT19006)+2 种基金the Natural Science Foundation Project of CQ CSTC(cstc2018jcyjA 3794)China "post-doctoral innovative talent support program"(BX20180056)China Postdoctoral Science Foundation(2018M643788XB)~~
文摘Bi2WO6 is a typical visible-light-responsive semiconductor photocatalyst with a layered structure.However,the relatively large bandgap(2.6–2.8 eV)and quick recombination of photo-generated carriers result in its low quantum efficiency.In this paper,Bi-nanospheres-modified flower-like Bi2WO6 was successfully prepared by solvothermal treatment of Bi2WO6 powders in Bi(NO3)3 solution using ethylene glycol as reductant.The photoreactivity of this photocatalyst was evaluated by the oxidation of NO in a continuous-flow reactor under irradiation by a visible LED lamp(λ>400 nm).It was found that both Bi nanospheres and flower-like Bi2WO6 precursor exhibit very poor photocatalytic activity with NO removal rates of only 7.7%and 8.6%,respectively.The photoreactivity of Bi/Bi2WO6 was found to steadily increase from 12.3%to 53.1%with increase in the amount of Bi nanospheres from 0 to 10 wt%.However,with further increase in the loading amount of Bi nanospheres,the photoreactivity of Bi/Bi2WO6 hybridized photocatalyst begins to decrease,possibly due to the light filtering by the Bi nanospheres.The enhanced visible photoreactivity of Bi/Bi2WO6 towards NO abatement was attributed to surface plasmon resonance driven interfacial charge separation.The excellent stability of Bi/Bi2WO6 hybridized photocatalyst towards NO oxidation demonstrates its potential for applications such as air purification.
基金supported by the National Natural Science Foundation of China(51672312,21373275)the Fundamental Research Funds for the Central Universities,South-Central University for Nationalities(CZT19006)~~
文摘Hierarchically structured nanomaterials have attracted much attention owing to their unique properties.In this study,TiO2 nanofibers assembled from nanosheets(TiO2-NFs-NSs)were fabricated through electrospinning technique,which was followed by hydrothermal treatment in NaOH solution.The effect of hydrothermal reaction time(0-3 h)on the structure and properties of TiO2 nanofibers(TiO2-NFs)was systematically studied,and TiO2-NFs was evaluated in terms of the photocatalytic activity toward photocatalytic oxidation of acetone and the photoelectric conversion efficiency of dye-sensitized solar cells.It was found that(1)hydrothermal treatment of TiO2-NFs in NaOH solution followed by acid washing and calcination results in the formation of TiO2-NFs-NSs;(2)upon extending the hydrothermal reaction time from 0 h to 3 h,the BET surface area of TiO2-NFs-NSs(T3.0 sample)increases 3.8 times(from 28 to 106 m2 g^-1),while the pore volume increases 6.0 times(from 0.09 to 0.54 cm3 g^-1);(3)when compared with those of pristine TiO2-NFs(T0 sample),the photoreactivity of the optimized TiO2-NFs-NSs toward acetone oxidation increases 3.1 times and the photoelectric conversion efficiency increases 2.3 times.The enhanced photoreactivity of TiO2-NFs-NSs is attributed to the enlarged BET surface area and increased pore volume,which facilitate the adsorption of substrate and penetration of gas,and the unique hollow structure of TiO2-NFs-NSs,which facilitates light harvesting through multiple optical reflections between the TiO2 nanosheets.