目的本文提出一种新颖的基于模糊同质直方图和数据融合技术的彩色图像分割算法。方法首先计算图像的同质特征和同质直方图,然后检测出直方图的峰值点对RGB彩色图像各层进行初始分割,最后计算各基色彩色图像的概率分配函数,使用基于正交...目的本文提出一种新颖的基于模糊同质直方图和数据融合技术的彩色图像分割算法。方法首先计算图像的同质特征和同质直方图,然后检测出直方图的峰值点对RGB彩色图像各层进行初始分割,最后计算各基色彩色图像的概率分配函数,使用基于正交和的Dempster-Shafer(DS)理论合并规则进行图像融合,得到最终的彩色分割图像。结果选用人工合成和多种医学图像进行仿真实验。定性分析表明基于本文算法的分割图像对比度和清晰度均最优,且图像中细胞边界清晰完整,细胞数量真实可靠;定量评估结果显示基于本文算法的图像分割敏感度均最高,显著优于现存的基于目标点到原型成员之间距离的优良模型(Model for Membership Functions,MMFD)和高斯分布假设和直方图阈值(Model Mass Function Method Based on the Assumption of Gaussian Distribution,MMFAGD)算法,且基于同质直方图优于FCM(Fuzzy C-Means)和HCM(Hard C-Means)产生的概率分配函数。结论基于模糊同质直方图的DS证据理论是一种可行的彩色图像分割算法,不仅能获得优质、稳定、准确的彩色分割图像,而且优越于其他现存的分割算法。展开更多
文摘目的本文提出一种新颖的基于模糊同质直方图和数据融合技术的彩色图像分割算法。方法首先计算图像的同质特征和同质直方图,然后检测出直方图的峰值点对RGB彩色图像各层进行初始分割,最后计算各基色彩色图像的概率分配函数,使用基于正交和的Dempster-Shafer(DS)理论合并规则进行图像融合,得到最终的彩色分割图像。结果选用人工合成和多种医学图像进行仿真实验。定性分析表明基于本文算法的分割图像对比度和清晰度均最优,且图像中细胞边界清晰完整,细胞数量真实可靠;定量评估结果显示基于本文算法的图像分割敏感度均最高,显著优于现存的基于目标点到原型成员之间距离的优良模型(Model for Membership Functions,MMFD)和高斯分布假设和直方图阈值(Model Mass Function Method Based on the Assumption of Gaussian Distribution,MMFAGD)算法,且基于同质直方图优于FCM(Fuzzy C-Means)和HCM(Hard C-Means)产生的概率分配函数。结论基于模糊同质直方图的DS证据理论是一种可行的彩色图像分割算法,不仅能获得优质、稳定、准确的彩色分割图像,而且优越于其他现存的分割算法。