目的:探讨基于双参数磁共振成像(biparametric magnetic resonance imaging,bp-MRI)第二版前列腺影像报告和数据系统(Prostate Imaging Reporting and Data System version 2,PI-RADS v2)联合临床指标建立的列线图模型对前列腺临床显著...目的:探讨基于双参数磁共振成像(biparametric magnetic resonance imaging,bp-MRI)第二版前列腺影像报告和数据系统(Prostate Imaging Reporting and Data System version 2,PI-RADS v2)联合临床指标建立的列线图模型对前列腺临床显著癌(clinically significant prostate cancer,cs-PCa)风险的预测能力。方法:回顾并分析2015年1月—2019年12月经穿刺标本病理学检查证实的251例前列腺bp-MRI检查的患者临床及影像学资料,包括PI-RADS v2评分、年龄、总前列腺特异性抗原(total prostate-specific antigen,t-PSA)、游离PSA(free PSA,f-PSA)、游离PSA比值(percent free PSA,f/t-PSA)、前列腺体积(prostate volume,PV)和PSA密度(PSA density,PSAD)。多因素logistic回归分析确定诊断cs-PCa的独立预测指标,建立列线图模型。应用受试者工作特征(receiver operating characteristic,ROC)曲线比较预测模型和各独立预测指标对cs-PCa的诊断效能。结果:PI-RADS v2评分、年龄和PV是诊断cs-PCa的独立预测指标(P<0.05)。构建的列线图预测模型有良好的预测准确度(C-index值为0.920)。预测模型诊断cs-PCa曲线下面积(area under curve,AUC)为0.932,显著高于PI-RADS v2评分(0.864,P<0.001)、PV(0.754,P<0.001)和年龄(0.676,P<0.001)。预测模型诊断cs-PCa的灵敏度和特异度分别为90.3%、85.2%,均高于PI-RADS v2评分(85.5%,76.2%)、PV(71.0%,69.3%)和年龄(85.5%,41.3%)。结论:基于bp-MRI PI-RADS v2评分、PV和年龄建立的列线图模型有较高的预测价值,能提高对cs-PCa的诊断能力,具有良好的临床实用价值。展开更多