We present a theoretical analysis for heat transfer in power law non-Newtonian fluid by assuming that the thermal diffusivity is a function of temperature gradient. The laminar boundary layer energy equation is consid...We present a theoretical analysis for heat transfer in power law non-Newtonian fluid by assuming that the thermal diffusivity is a function of temperature gradient. The laminar boundary layer energy equation is considered as an example to illustrate the application. It is shown that the boundary layer energy equation subject to the corresponding boundary conditions can be transformed to a boundary value problem of a nonlinear ordinary differential equation when similarity variables are introduced. Numerical solutions of the similarity energy equation are presented.展开更多
基金Supported by the National Natural Science Foundations of China under Grant No 50476083.
文摘We present a theoretical analysis for heat transfer in power law non-Newtonian fluid by assuming that the thermal diffusivity is a function of temperature gradient. The laminar boundary layer energy equation is considered as an example to illustrate the application. It is shown that the boundary layer energy equation subject to the corresponding boundary conditions can be transformed to a boundary value problem of a nonlinear ordinary differential equation when similarity variables are introduced. Numerical solutions of the similarity energy equation are presented.