In the era of the Internet of Things,Bluetooth low energy(BLE/BTLE)plays an important role as a wellknown wireless communication technology.While the security and privacy of BLE have been analyzed and fixed several ti...In the era of the Internet of Things,Bluetooth low energy(BLE/BTLE)plays an important role as a wellknown wireless communication technology.While the security and privacy of BLE have been analyzed and fixed several times,the threat of side-channel attacks to BLE devices is still not well understood.In this work,we highlight a side-channel threat to the re-keying protocol of BLE.This protocol uses a fixed long term key for generating session keys,and the leakage of the long term key could render the encryption of all the following(and previous)connections useless.Our attack exploits the side-channel leakage of the re-keying protocol when it is implemented on embedded devices.In particular,we present successful correlation electromagnetic analysis and deep learning based profiled analysis that recover long term keys of BLE devices.We evaluate our attack on an ARM Cortex-M4 processor(Nordic Semiconductor nRF52840)running Nimble,a popular open-source BLE stack.Our results demonstrate that the long term key can be recovered within only a small amount of electromagnetic traces.Further,we summarize the features and limitations of our attack,and suggest a range of countermeasures to prevent it.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.62072307。
文摘In the era of the Internet of Things,Bluetooth low energy(BLE/BTLE)plays an important role as a wellknown wireless communication technology.While the security and privacy of BLE have been analyzed and fixed several times,the threat of side-channel attacks to BLE devices is still not well understood.In this work,we highlight a side-channel threat to the re-keying protocol of BLE.This protocol uses a fixed long term key for generating session keys,and the leakage of the long term key could render the encryption of all the following(and previous)connections useless.Our attack exploits the side-channel leakage of the re-keying protocol when it is implemented on embedded devices.In particular,we present successful correlation electromagnetic analysis and deep learning based profiled analysis that recover long term keys of BLE devices.We evaluate our attack on an ARM Cortex-M4 processor(Nordic Semiconductor nRF52840)running Nimble,a popular open-source BLE stack.Our results demonstrate that the long term key can be recovered within only a small amount of electromagnetic traces.Further,we summarize the features and limitations of our attack,and suggest a range of countermeasures to prevent it.