GaInNAs with bandgap 1.0 eV is a promising material for multi-junction solar cell applications. However, the poor quality of GaInNAs grown by metalorganic chemical vapor deposition hinders its device performance. Here...GaInNAs with bandgap 1.0 eV is a promising material for multi-junction solar cell applications. However, the poor quality of GaInNAs grown by metalorganic chemical vapor deposition hinders its device performance. Here to reap the benefits of 1.0-eV sub-cell, we focus on the optimization of annealing temperature and growth ambient of GaInNAs. The GaInNAs sub-cell exhibits a concentration reduction of shallow level defects when it is annealed at 700℃ for 20 min. As compared with the growth case using a hydrogen ambient, the N incorporation efficiency of GaInNAs can be enhanced during the growth in an N2 ambient. Furthermore, background carbon concentration is observed to reduce in the as-grown GaInNAs epilayer. A GaInNAs sub-cell with 82% peak external quantum efficiency is obtained in a dual-junction GaInNAs/Ge solar cell. Finally, a monolithic Al Ga In P/Al Ga In As/Ga In As/GaInNAs/Ge five-junction solar cell is grown for space application. The fabricated device shows a conversion efficiency of 31.09% and a short-circuit current density of 11.81 m A/cm2 under 1 sun AM 0 illumination.展开更多
We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the...We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum.展开更多
It is well known that conventional CalnP/GMnAs/Ce three-junction (3J) solar cells are difficult to continue to ascend when the effieiencies reach 32% and 42% under AMO and AM1.5D concentrated, respectively. In AlCaI...It is well known that conventional CalnP/GMnAs/Ce three-junction (3J) solar cells are difficult to continue to ascend when the effieiencies reach 32% and 42% under AMO and AM1.5D concentrated, respectively. In AlCaInP/AiGMnAs/CalnAs/CalnNAs/Ce five-junction (5,/) solar cells, the performance of the AlGaInP, Al- CalnAs and CalnNAs sub cell is the key factor for conversion efficiency of the 5J solar cell. We investigate the AlCaInP/AlCaInAs/Ge 3J solar cell. By incorporating surfactant trimthylantimony into the AlGaInP material, the crystal quality of AICalnP is improved and the spectrum absorption range of AICalnAs is extended. The current density of each sub cell exceeds ll.3mA/cm2 as is desired. Then we apply this 3J structure to grow the lattice-matched 5J solar ceil and obtain the short circuit current of 134.96 mA, open circuit voltage of 4399.6 m V, fill factor of 81.7% and conversion efficiency of 29.87%.展开更多
聚光光伏模组中,二次光学元件对增加太阳能电池接收到的入射光能量,提高聚焦光斑均匀性和增大菲涅耳透镜接收角具有重要作用。设计了一种用于聚光光伏模组的全反射式二次光学元件,用Solidworks软件建立了三维模型,结合实际工程应用,借助...聚光光伏模组中,二次光学元件对增加太阳能电池接收到的入射光能量,提高聚焦光斑均匀性和增大菲涅耳透镜接收角具有重要作用。设计了一种用于聚光光伏模组的全反射式二次光学元件,用Solidworks软件建立了三维模型,结合实际工程应用,借助Zemax软件光学模拟仿真手段,对二次光学元件的倾角和高度等重要参数进行了优化。并制作了不同参数的二次光学元件,配合菲涅耳透镜、太阳能电池,搭建了实物聚光发电单元,在太阳模拟器下进行I-V性能测试,结果表明当二次光学元件高度为6 mm,上圆直径为7 mm时,太阳能电池的输出功率达到最大值720 m W,与不加二次光学元件相比,输出功率提高了16%。说明该二次光学元件对提高聚光模组效率作用显著。展开更多
文摘GaInNAs with bandgap 1.0 eV is a promising material for multi-junction solar cell applications. However, the poor quality of GaInNAs grown by metalorganic chemical vapor deposition hinders its device performance. Here to reap the benefits of 1.0-eV sub-cell, we focus on the optimization of annealing temperature and growth ambient of GaInNAs. The GaInNAs sub-cell exhibits a concentration reduction of shallow level defects when it is annealed at 700℃ for 20 min. As compared with the growth case using a hydrogen ambient, the N incorporation efficiency of GaInNAs can be enhanced during the growth in an N2 ambient. Furthermore, background carbon concentration is observed to reduce in the as-grown GaInNAs epilayer. A GaInNAs sub-cell with 82% peak external quantum efficiency is obtained in a dual-junction GaInNAs/Ge solar cell. Finally, a monolithic Al Ga In P/Al Ga In As/Ga In As/GaInNAs/Ge five-junction solar cell is grown for space application. The fabricated device shows a conversion efficiency of 31.09% and a short-circuit current density of 11.81 m A/cm2 under 1 sun AM 0 illumination.
文摘We directly grow a lattice matched GalnP/GalnAs/GalnNAs/Ge (1.88 eVil .42 eVil .05 eV/0.67eV) four-junction (4J) solar cell on a Ge substrate by the metal organic chemical vapor deposition technology. To solve the current limit of the GalnNAs sub cell, we design three kinds of anti-reflection coatings and adjust the base region thickness of the GalnNAs sub cell. Developed by a series of experiments, the external quantum efficiency of the GalnNAs sub cell exceeds 80%, and its current density reaches 11.24 mA/cm2. Therefore the current limit of the 4J solar cell is significantly improved. Moreover, we discuss the difference of test results between 4J and GalnP/GalnAs/Ge solar cells under the 1 sun AMO spectrum.
文摘It is well known that conventional CalnP/GMnAs/Ce three-junction (3J) solar cells are difficult to continue to ascend when the effieiencies reach 32% and 42% under AMO and AM1.5D concentrated, respectively. In AlCaInP/AiGMnAs/CalnAs/CalnNAs/Ce five-junction (5,/) solar cells, the performance of the AlGaInP, Al- CalnAs and CalnNAs sub cell is the key factor for conversion efficiency of the 5J solar cell. We investigate the AlCaInP/AlCaInAs/Ge 3J solar cell. By incorporating surfactant trimthylantimony into the AlGaInP material, the crystal quality of AICalnP is improved and the spectrum absorption range of AICalnAs is extended. The current density of each sub cell exceeds ll.3mA/cm2 as is desired. Then we apply this 3J structure to grow the lattice-matched 5J solar ceil and obtain the short circuit current of 134.96 mA, open circuit voltage of 4399.6 m V, fill factor of 81.7% and conversion efficiency of 29.87%.
文摘聚光光伏模组中,二次光学元件对增加太阳能电池接收到的入射光能量,提高聚焦光斑均匀性和增大菲涅耳透镜接收角具有重要作用。设计了一种用于聚光光伏模组的全反射式二次光学元件,用Solidworks软件建立了三维模型,结合实际工程应用,借助Zemax软件光学模拟仿真手段,对二次光学元件的倾角和高度等重要参数进行了优化。并制作了不同参数的二次光学元件,配合菲涅耳透镜、太阳能电池,搭建了实物聚光发电单元,在太阳模拟器下进行I-V性能测试,结果表明当二次光学元件高度为6 mm,上圆直径为7 mm时,太阳能电池的输出功率达到最大值720 m W,与不加二次光学元件相比,输出功率提高了16%。说明该二次光学元件对提高聚光模组效率作用显著。