最近,利用步态对个人身份进行识别受到越来越多生物识别技术研究者的重视。步态能量图(GEI-Gait Energy Image)是一种有效的步态表征方法,局部二值模式(LBP-Local Binary Pattern)能很好地提取局部信息,所以利用局部二值模式(LBP)来提...最近,利用步态对个人身份进行识别受到越来越多生物识别技术研究者的重视。步态能量图(GEI-Gait Energy Image)是一种有效的步态表征方法,局部二值模式(LBP-Local Binary Pattern)能很好地提取局部信息,所以利用局部二值模式(LBP)来提取步态能量图(GEI)的局部特征并用于识别。首先,为了更好地提取局部信息,把步态能量图(GEI)分块,提取各个子块上的LBP特征,然后把各子块在特征层进行融合,得到整个步态能量图(GEI)的特征表达;同时为了更好地挖掘步态能量图(GEI)的信息,对LBP模式进行了扩展。由于得到的LBP特征维数较高,利用具有降维和良好识别能力的辨识共同向量(DCV-Discriminant Common Vector)对步态能量图的LBP特征进行维数约减并增加类间距离。最后,只需利用简单的最近邻分类器就能取得较好的识别效果。将该算法在CASIA数据库上进行了试验,并取得了较高的正确识别率。展开更多
文摘最近,利用步态对个人身份进行识别受到越来越多生物识别技术研究者的重视。步态能量图(GEI-Gait Energy Image)是一种有效的步态表征方法,局部二值模式(LBP-Local Binary Pattern)能很好地提取局部信息,所以利用局部二值模式(LBP)来提取步态能量图(GEI)的局部特征并用于识别。首先,为了更好地提取局部信息,把步态能量图(GEI)分块,提取各个子块上的LBP特征,然后把各子块在特征层进行融合,得到整个步态能量图(GEI)的特征表达;同时为了更好地挖掘步态能量图(GEI)的信息,对LBP模式进行了扩展。由于得到的LBP特征维数较高,利用具有降维和良好识别能力的辨识共同向量(DCV-Discriminant Common Vector)对步态能量图的LBP特征进行维数约减并增加类间距离。最后,只需利用简单的最近邻分类器就能取得较好的识别效果。将该算法在CASIA数据库上进行了试验,并取得了较高的正确识别率。