期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种结合改进Inception V2模块和CBAM的轴承故障诊断方法 被引量:17
1
作者 姚齐水 别帅帅 +1 位作者 余江鸿 陈前旭 《振动工程学报》 EI CSCD 北大核心 2022年第4期949-957,共9页
传统深度学习的轴承故障诊断方法网络复杂,训练参数多,模型泛化性弱。针对上述问题,在工业大数据背景下,提出一种结合改进Inception V2模块和CBAM注意力机制的轴承故障诊断方法,改进后的Inception V2模块通过增加平均池化层,进一步拓宽... 传统深度学习的轴承故障诊断方法网络复杂,训练参数多,模型泛化性弱。针对上述问题,在工业大数据背景下,提出一种结合改进Inception V2模块和CBAM注意力机制的轴承故障诊断方法,改进后的Inception V2模块通过增加平均池化层,进一步拓宽分支网络结构,从而提高网络表达能力。将轴承振动信号通过小波变换转换为时频图,作为卷积神经网络的输入,通过改进Inception V2模块对输入特征进行自适应特征提取,跨通道对提取的特征进行信息组织;通过CBAM注意力机制生成通道和空间的双重注意力权重,增强相关度高的特征并抑制相关度不高的特征;将生成的特征数据输入到全局平均池化层,并输出故障诊断结果。实验结果表明:该方法可以建立“浅层”卷积神经网络模型,减少模型参数,加快模型收敛速度,实现99.75%的准确率;同时在不同负载以及高噪声条件下,模型有较好的泛化性,更适合应用在工业大数据中。 展开更多
关键词 故障诊断 滚动轴承 卷积神经网络 CBAM注意力机制 故障特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部