A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposi...A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn^2+ for Zn^2+ without additional acceptor doping. The substitution of N for O (NO^-) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn^2+ and Mn^3+ via NO^-, The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration.展开更多
A high-quality Ga2O3 thin film is deposited on an SiC substrate to form a heterojunction structure. The band alignment of the Ga2O3/6H-SiC heterojunction is studied by using synchrotron radiation photoelectron spectro...A high-quality Ga2O3 thin film is deposited on an SiC substrate to form a heterojunction structure. The band alignment of the Ga2O3/6H-SiC heterojunction is studied by using synchrotron radiation photoelectron spectroscopy, The energy band diagram of the Ga2O3/6H-SiC heterojunction is obtained by analysing the binding energies of Ga 3d and Si 2p at the surface and the interface of the heterojunction. The valence band offset is experimentally determined to be 2.8 eV and the conduction band offset is calculated to be 0.89 eV, which indicate a type-II band alignment. This provides useful guidance for the application of Ga2O3/6H-SiC electronic devices.展开更多
基金Project supported by the Shanghai Nanotechnology Promotion Center (Grant No 0452nm071)the National Natural Science Foundation of China (Grant Nos 50702071 and 50772122)
文摘A series of Mn-doped ZnO films have been prepared in different sputtering plasmas by using the inductively coupled plasma enhanced physical vapour deposition. The films show paramagnetic behaviour when they are deposited in an argon plasma. The Hall measurement indicates that ferromagnetism cannot be realized by increasing the electron concentration. However, the room-temperature ferromagnetism is obtained when the films are deposited in a mixed argon-nitrogen plasma. The first-principles calculations reveal that antiferromagnetic ordering is favoured in the case of the substitution of Mn^2+ for Zn^2+ without additional acceptor doping. The substitution of N for O (NO^-) is necessary to induce ferromagnetic couplings in the Zn-Mn-O system. The hybridization between N 2p and Mn 3d provides an empty orbit around the Fermi level. The hopping of Mn 3d electrons through the empty orbit can induce the ferromagnetic coupling. The ferromagnetism in the N-doped Zn-Mn-O system possibly originates from the charge transfer between Mn^2+ and Mn^3+ via NO^-, The key factor is the empty orbit provided by substituting N for O, rather than the conductivity type or the carrier concentration.
基金supported by the National Natural Science Foundation of China(Grant Nos.50702071 and 50772122)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.51002176)
文摘A high-quality Ga2O3 thin film is deposited on an SiC substrate to form a heterojunction structure. The band alignment of the Ga2O3/6H-SiC heterojunction is studied by using synchrotron radiation photoelectron spectroscopy, The energy band diagram of the Ga2O3/6H-SiC heterojunction is obtained by analysing the binding energies of Ga 3d and Si 2p at the surface and the interface of the heterojunction. The valence band offset is experimentally determined to be 2.8 eV and the conduction band offset is calculated to be 0.89 eV, which indicate a type-II band alignment. This provides useful guidance for the application of Ga2O3/6H-SiC electronic devices.