期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于图卷积网络的药物靶标关联预测算法
被引量:
4
1
作者
徐国保
陈媛晓
王骥
《计算机应用》
CSCD
北大核心
2021年第5期1522-1526,共5页
传统的基于生物学实验的药物-靶标关联预测成本高、效率低,难以满足医药研发的需求。为了解决上述问题,提出一种新的基于图卷积网络的药物靶标关联预测(GCDTI)算法。GCDTI利用半监督学习方法将图卷积和自编码技术相结合,从而分别构建用...
传统的基于生物学实验的药物-靶标关联预测成本高、效率低,难以满足医药研发的需求。为了解决上述问题,提出一种新的基于图卷积网络的药物靶标关联预测(GCDTI)算法。GCDTI利用半监督学习方法将图卷积和自编码技术相结合,从而分别构建用于整合节点特征的编码层和用于预测全链接交互网络的解码层;同时使用图卷积技术建立潜在因子模型,并有效利用药物和靶标的高维属性信息进行端到端的学习。所提算法不需要对输入的特征信息进行任何预处理便可以将其与已知相互作用网络相结合,证明了该模型的图卷积层能够有效地融合输入数据与节点特征。与其他先进方法相比,GCDTI的预测精度和平均受试者工作特性(ROC)曲线下的面积(AUC)(0.924 6±0.004 8)最高,且具有较强的鲁棒性。实验结果表明:当需要预测大量的药物和靶标数据的关联关系时,利用端到端学习的模型架构的GCDTI有潜力成为一种可靠的预测方法。
展开更多
关键词
药物-靶标关联预测
谱图卷积
计算预测模型
自编码
k折交叉验证
下载PDF
职称材料
题名
基于图卷积网络的药物靶标关联预测算法
被引量:
4
1
作者
徐国保
陈媛晓
王骥
机构
广东海洋大学电子与信息工程学院
出处
《计算机应用》
CSCD
北大核心
2021年第5期1522-1526,共5页
基金
2018年广东省工程技术研究中心资助项目([2018]2580)
广东海洋大学创新强校重大科研培养计划项目(GDOU2017052602)。
文摘
传统的基于生物学实验的药物-靶标关联预测成本高、效率低,难以满足医药研发的需求。为了解决上述问题,提出一种新的基于图卷积网络的药物靶标关联预测(GCDTI)算法。GCDTI利用半监督学习方法将图卷积和自编码技术相结合,从而分别构建用于整合节点特征的编码层和用于预测全链接交互网络的解码层;同时使用图卷积技术建立潜在因子模型,并有效利用药物和靶标的高维属性信息进行端到端的学习。所提算法不需要对输入的特征信息进行任何预处理便可以将其与已知相互作用网络相结合,证明了该模型的图卷积层能够有效地融合输入数据与节点特征。与其他先进方法相比,GCDTI的预测精度和平均受试者工作特性(ROC)曲线下的面积(AUC)(0.924 6±0.004 8)最高,且具有较强的鲁棒性。实验结果表明:当需要预测大量的药物和靶标数据的关联关系时,利用端到端学习的模型架构的GCDTI有潜力成为一种可靠的预测方法。
关键词
药物-靶标关联预测
谱图卷积
计算预测模型
自编码
k折交叉验证
Keywords
drug-target association prediction
spectral graph convolution
computational prediction model
autoencoder
k-fold cross validation
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于图卷积网络的药物靶标关联预测算法
徐国保
陈媛晓
王骥
《计算机应用》
CSCD
北大核心
2021
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部