首先利用层错能的热力学模型计算了Mn含量分别为5%、7%的中锰Q&P钢中残余奥氏体的层错能,并分析了热处理过程中碳配分对层错能的影响;然后通过XRD、SEM及TEM分析等研究了中锰Q&P钢拉伸变形过程中的变形机制;最后将层错能与实测...首先利用层错能的热力学模型计算了Mn含量分别为5%、7%的中锰Q&P钢中残余奥氏体的层错能,并分析了热处理过程中碳配分对层错能的影响;然后通过XRD、SEM及TEM分析等研究了中锰Q&P钢拉伸变形过程中的变形机制;最后将层错能与实测变形机制相结合分析了两者的关系.结果表明:中锰Q&P钢残余奥氏体的层错能计算必须考虑碳的配分;7Mn-1.5Si-0.2C试样的层错能为4.55 m J/m^2,5Mn-1.5Si-0.2C试样的层错能为17.8 m J/m^2;钢中残余奥氏体含量的对数与变形量成线性关系;中锰Q&P钢的残余奥氏体在变形过程中主要发生的是TRIP效应,这与通过层错能判别的结果相吻合.展开更多
文摘首先利用层错能的热力学模型计算了Mn含量分别为5%、7%的中锰Q&P钢中残余奥氏体的层错能,并分析了热处理过程中碳配分对层错能的影响;然后通过XRD、SEM及TEM分析等研究了中锰Q&P钢拉伸变形过程中的变形机制;最后将层错能与实测变形机制相结合分析了两者的关系.结果表明:中锰Q&P钢残余奥氏体的层错能计算必须考虑碳的配分;7Mn-1.5Si-0.2C试样的层错能为4.55 m J/m^2,5Mn-1.5Si-0.2C试样的层错能为17.8 m J/m^2;钢中残余奥氏体含量的对数与变形量成线性关系;中锰Q&P钢的残余奥氏体在变形过程中主要发生的是TRIP效应,这与通过层错能判别的结果相吻合.