-
题名基于端到端深度学习的有机光伏材料光电转化效率预测
被引量:1
- 1
-
-
作者
胡松
刘国红
何英
颜嘉晨
陈寒乐
闫希亮
闫兵
-
机构
广州大学大湾区环境研究院珠江三角洲水质安全与保护教育部重点实验室
山东大学环境科学与工程学院
-
出处
《环境工程》
CAS
CSCD
北大核心
2022年第6期188-193,共6页
-
基金
国家自然科学基金青年科学基金项目“基于原子尺度深度学习的纳塑料及其复合污染物构效关系和毒性预测研究”(22106025)
国家自然科学基金重点项目“纳米细胞效应的大数据构建及智能模拟预测”(22036002)。
-
文摘
碳中和背景下,亟需开发高效清洁的新型能源,以减少对化石能源的依赖。有机光伏材料作为一种可将太阳能或其他光能直接转化为电能的材料,日益成为一种具有重大应用前景的低碳能源材料。在探索新的高性能有机光伏材料的过程中,机器学习虽然能够提高材料设计效率,但其预测能力极大受制于描述符的开发和选取。利用循环神经网络、卷积神经网络、图神经网络等算法,构建端到端的深度学习模型预测有机光伏材料光电转化效率,所建模型可直接从SMILES符号、分子图像、分子图网络中提取化合物结构信息,而无须人为开发和选取描述符。所得模型不仅能够较为准确地预测有机光伏材料的光电转化效率(其中最优模型五折交叉验证结果和测试集预测结果决定系数均>0.73),而且能够识别影响转化效率的关键结构特征。该研究结果可为新型环境功能材料设计提供理论参考。
-
关键词
碳中和
有机光伏材料
机器学习
环境功能新材料设计
低碳能源
-
Keywords
carbon neutrality
organic photovoltaic materials
machine learning
design of novel environmental functional materials
low-carbon energy
-
分类号
TB34
[一般工业技术—材料科学与工程]
TP18
[自动化与计算机技术—控制理论与控制工程]
-