期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于BiX-NAS的地震层序智能识别--以荷兰近海地区F3数据为例
1
作者
陈建玮
陈国雄
+1 位作者
王德涛
徐富文
《地球科学》
EI
CAS
CSCD
北大核心
2023年第8期3162-3178,共17页
近些年来,深度学习方法在地震数据处理和解释领域得到了广泛关注和应用,其中大多数深度学习算法采用了端到端的深度卷积神经网络以实现地质体特征的提取与识别(如地层、断裂以及盐丘等).然而,这些算法往往含有数十万甚至百万的可训练参...
近些年来,深度学习方法在地震数据处理和解释领域得到了广泛关注和应用,其中大多数深度学习算法采用了端到端的深度卷积神经网络以实现地质体特征的提取与识别(如地层、断裂以及盐丘等).然而,这些算法往往含有数十万甚至百万的可训练参数,导致模型存在参数冗余、训练效率低等问题.为了解决上述问题,构建了一个轻量化的双向多尺度网络结构模型用于地震层序智能识别.该模型通过两阶段神经网络体系结构搜索算法(neural architecture search,NAS)剔除了双向多尺度网络结构的冗余连接,使得网络结构大幅简化,从而减少参数冗余,进而提高训练效率.采用荷兰近海地区的F3地震数据集对基于NAS算法简化的双向多尺度网络结构地层识别模型进行训练、验证和预测.结果表明:在实际的地层识别任务中,该轻量化模型的平均识别准确率达到了95.52%,并对远离训练工区的预测集具有良好的泛化性.此外,该模型的参数量仅为U形卷积神经网络(U-Net)模型的4.4%,在训练效率、模型参数量等方面优于前人的相关研究工作;并对地震振幅中的噪声干扰具有鲁棒性.因此,这些结果展现了BiX-NAS网络模型在实际地震地层自动识别中良好的应用前景.
展开更多
关键词
地层自动识别
深度学习
神经网络体系结构搜索算法
双向多尺度网络
原文传递
题名
基于BiX-NAS的地震层序智能识别--以荷兰近海地区F3数据为例
1
作者
陈建玮
陈国雄
王德涛
徐富文
机构
中国地质大学地质过程与矿产资源国家重点实验室
湖北省地质局第一地质大队
出处
《地球科学》
EI
CAS
CSCD
北大核心
2023年第8期3162-3178,共17页
基金
国家自然科学基金面上项目(No.41972305)
原创探索计划项目(No.42050103)
地质过程与矿产资源国家重点实验室科技部专项经费资助(No.MSFGPMR2022-3)。
文摘
近些年来,深度学习方法在地震数据处理和解释领域得到了广泛关注和应用,其中大多数深度学习算法采用了端到端的深度卷积神经网络以实现地质体特征的提取与识别(如地层、断裂以及盐丘等).然而,这些算法往往含有数十万甚至百万的可训练参数,导致模型存在参数冗余、训练效率低等问题.为了解决上述问题,构建了一个轻量化的双向多尺度网络结构模型用于地震层序智能识别.该模型通过两阶段神经网络体系结构搜索算法(neural architecture search,NAS)剔除了双向多尺度网络结构的冗余连接,使得网络结构大幅简化,从而减少参数冗余,进而提高训练效率.采用荷兰近海地区的F3地震数据集对基于NAS算法简化的双向多尺度网络结构地层识别模型进行训练、验证和预测.结果表明:在实际的地层识别任务中,该轻量化模型的平均识别准确率达到了95.52%,并对远离训练工区的预测集具有良好的泛化性.此外,该模型的参数量仅为U形卷积神经网络(U-Net)模型的4.4%,在训练效率、模型参数量等方面优于前人的相关研究工作;并对地震振幅中的噪声干扰具有鲁棒性.因此,这些结果展现了BiX-NAS网络模型在实际地震地层自动识别中良好的应用前景.
关键词
地层自动识别
深度学习
神经网络体系结构搜索算法
双向多尺度网络
Keywords
stratigraphic identification
deep learning
neural architecture search
bi-directional multi-scale network.
分类号
P628 [天文地球—地质矿产勘探]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于BiX-NAS的地震层序智能识别--以荷兰近海地区F3数据为例
陈建玮
陈国雄
王德涛
徐富文
《地球科学》
EI
CAS
CSCD
北大核心
2023
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部