期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
最小二乘支持向量机算法研究 被引量:32
1
作者 朱家元 陈开陶 张恒喜 《计算机科学》 CSCD 北大核心 2003年第7期157-159,共3页
In this paper, we present a least squares version for support vector machines(SVM)classifiers and functionestimation. Due to equality type constraints in the formulation, the solution follows from solving a set of lin... In this paper, we present a least squares version for support vector machines(SVM)classifiers and functionestimation. Due to equality type constraints in the formulation, the solution follows from solving a set of linear equa-tions, instead of quadratic programming for classical SVM. The approach is illustrated on a two-spiral benchmarkclassification problem. The results show that the LS-SVM is an efficient method for solving pattern recognition. 展开更多
关键词 支持向量机 机器学习 模式识别 最小二乘算法 函数估计
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部