期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv5的电力金具目标检测方法
1
作者 邓凯锋 蒲阳 +3 位作者 周力 陈开雷 蔡嘉华 鲁彩江 《自动化与仪器仪表》 2023年第11期95-99,共5页
为实现在复杂环境下对电力金具的准确快速检测,提出了一种基于改进YOLOv5(You Only Look Once version 5)的电力金具目标检测方法。针对现有目标检测方法参数量大、类别不平衡影响网络训练效果等问题,引入了轻量化网络Ghost Net,减少了... 为实现在复杂环境下对电力金具的准确快速检测,提出了一种基于改进YOLOv5(You Only Look Once version 5)的电力金具目标检测方法。针对现有目标检测方法参数量大、类别不平衡影响网络训练效果等问题,引入了轻量化网络Ghost Net,减少了冗余特征图对网络预测的影响,通过引入ECA(Efficient Channel Attention)注意力机制提高了网络的特征提取能力,避免了目标预测受到复杂环境的干扰,并使用Focal-CIoU(Focal-Complete-IoU) Loss损失函数提高了模型对少数类别的识别能力。实验结果表明,提出的算法在准确率和平均精度均值等评价指标中皆优于原始的YOLOv5算法,并且参数量仅占原始网络的61.2%。精确度提升了4.0%,mAP@0.5提升了1.9%,mAP@0.5:0.95提升了4.5%。同时,提出的算法在保持较高的预测精度的同时,均衡了推理速度,能够达到实时的电力金具目标检测要求。 展开更多
关键词 YOLOv5 注意力机制 损失函数 电力金具
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部