Biofouling on ships and offshore structures has always been a difficult problem to solve,which not only jeopardizes the structural strength but also brings great economic losses.Ultrasonic cavitation is expected to so...Biofouling on ships and offshore structures has always been a difficult problem to solve,which not only jeopardizes the structural strength but also brings great economic losses.Ultrasonic cavitation is expected to solve this problem due to its characteristics of no damage to structures and no pollution.Starting from the phenomenon and mechanism of ultrasonic cleaning,this paper introduces the application of ultrasonic cavitation in ship,pipeline and oil cleaning as well as ballast water treatment.By reviewing the existing studies,limitations such as insufficient ultrasonic parameter studies,lack of uniform cleanliness standards,and insufficient cavitation studies are summarized to provide traceable research ideas for improving ultrasonic cavitation technology and to guide the expansion and improvement of its applications.展开更多
Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend...Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.展开更多
基金Supported by the National Natural Science Foundation of China(No.52101373)Shenzhen Science and Technology Program(No.CYJ20230807145621043)+2 种基金Postdoctoral Science Foundation of China(No.2021M692629)Young Talent Fund of the University Association for Science and Technology in Shaanxi,China(No.20210417)Fundamental Research Funds for the Central Universities(No.3102021HHZY030009).
文摘Biofouling on ships and offshore structures has always been a difficult problem to solve,which not only jeopardizes the structural strength but also brings great economic losses.Ultrasonic cavitation is expected to solve this problem due to its characteristics of no damage to structures and no pollution.Starting from the phenomenon and mechanism of ultrasonic cleaning,this paper introduces the application of ultrasonic cavitation in ship,pipeline and oil cleaning as well as ballast water treatment.By reviewing the existing studies,limitations such as insufficient ultrasonic parameter studies,lack of uniform cleanliness standards,and insufficient cavitation studies are summarized to provide traceable research ideas for improving ultrasonic cavitation technology and to guide the expansion and improvement of its applications.
文摘Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.