Hierarchical SAPO‐34 crystals were synthesized by a facile acid etching post‐treatment. Butterfly‐shaped porous patterns on four side faces and hierarchical pores composed of micropores,mesopores and macropores wer...Hierarchical SAPO‐34 crystals were synthesized by a facile acid etching post‐treatment. Butterfly‐shaped porous patterns on four side faces and hierarchical pores composed of micropores,mesopores and macropores were formed after a nitric acid or oxalic acid treatment. The catalyticperformance of the hierarchical SAPO‐34 for the methanol to olefins (MTO) process showed that thesynergistic effect of the hierarchical pores and acid sites resulted in a longer catalyst lifetime (from210 to 390 min for the acid treated SAPO‐34) and higher selectivity to light olefins of 92%–94%.The ethylene selectivity can be adjusted between 37.4% and 51.5% by the pore size. No hierarchical SAPO‐34 was obtained after a treatment with butanedioic acid, and with this sample, fast deactivation was detected after 100 min.展开更多
A novel melting-assisted solvent-free route using solid oxalic acid was proposed for the post-treatment of SAPO-11 zeolite,followed by loading with 0.5 wt%Pt by the incipient wetness impregnation method.Subsequently,t...A novel melting-assisted solvent-free route using solid oxalic acid was proposed for the post-treatment of SAPO-11 zeolite,followed by loading with 0.5 wt%Pt by the incipient wetness impregnation method.Subsequently,the performance of the obtained bifunctional catalysts toward the hydroisomerization of n-dodecane was examined.The prepared samples were characterized by XRD,SEM,BET,XRF,Py-IR,and solid-state NMR.From the results,it was found that the high crystallinity and uniform morphology were retained after the post-treatment and that more(002)crystal faces were exposed,which was beneficial since more acid sites were provided.More importantly,the total Bronsted acid sites and the ratio(Ra)of the micropore area to the total surface area were optimized by this method.Thus,the catalytic performance was enhanced significantly,and the prepared Pt-SAPO-11-10%catalyst had the highest i-dodecane yield of 80.1%compared to 55.3%of Pt-SAPO-11.Expectedly,this facile and cost-effective method is promising for the hydroisomerization of normal paraffin in the production of lubricant base oils.展开更多
CoCu/TiO_2 catalysts promoted using alkali metals(Li, Na, K, Rb, and Cs) were prepared by the homogeneous deposition-precipitation method followed by the incipient wetness impregnation method. The influences of the ...CoCu/TiO_2 catalysts promoted using alkali metals(Li, Na, K, Rb, and Cs) were prepared by the homogeneous deposition-precipitation method followed by the incipient wetness impregnation method. The influences of the alkali metals on the physicochemical properties of the CoCu/TiO_2 catalysts and the catalytic performance for CO_2 hydrogenation to long-chain hydrocarbons(C_(5+))were investigated in this work. According to the characterization of the catalysts based on X-ray photoelectron spectroscopy, X-ray diffraction, CO_2 temperature-programmed desorption(TPD), and H_2-TPD, the introduction of alkali metals could increase the CO_2 adsorption and decrease the H_2 chemisorption, which could suppress the formation of CH_4, enhance the production of C_(5+), and decrease the hydrogenation activity. Among all the promoters, the Na-modified CoCu/TiO_2 catalyst provided the maximum C_(5+) yield of 5.4%, with a CO_2 conversion of 18.4% and C_(5+) selectivity of42.1%, because it showed the strongest basicity and a slight decrease in the amount of H_2 desorption;it also exhibited excellent catalytic stability of more than 200 h.展开更多
基金supported by the National Natural Science Foundation of China (21403279, 21507141, 21506243)the Science and Technology Commission of Shanghai Municipality (14DZ1207602, 14DZ1203700)~~
文摘Hierarchical SAPO‐34 crystals were synthesized by a facile acid etching post‐treatment. Butterfly‐shaped porous patterns on four side faces and hierarchical pores composed of micropores,mesopores and macropores were formed after a nitric acid or oxalic acid treatment. The catalyticperformance of the hierarchical SAPO‐34 for the methanol to olefins (MTO) process showed that thesynergistic effect of the hierarchical pores and acid sites resulted in a longer catalyst lifetime (from210 to 390 min for the acid treated SAPO‐34) and higher selectivity to light olefins of 92%–94%.The ethylene selectivity can be adjusted between 37.4% and 51.5% by the pore size. No hierarchical SAPO‐34 was obtained after a treatment with butanedioic acid, and with this sample, fast deactivation was detected after 100 min.
基金supported by the National Natural Science Foundation of China(21776295)the Youth Innovation Promotion Association,CAS(2017355)~~
文摘A novel melting-assisted solvent-free route using solid oxalic acid was proposed for the post-treatment of SAPO-11 zeolite,followed by loading with 0.5 wt%Pt by the incipient wetness impregnation method.Subsequently,the performance of the obtained bifunctional catalysts toward the hydroisomerization of n-dodecane was examined.The prepared samples were characterized by XRD,SEM,BET,XRF,Py-IR,and solid-state NMR.From the results,it was found that the high crystallinity and uniform morphology were retained after the post-treatment and that more(002)crystal faces were exposed,which was beneficial since more acid sites were provided.More importantly,the total Bronsted acid sites and the ratio(Ra)of the micropore area to the total surface area were optimized by this method.Thus,the catalytic performance was enhanced significantly,and the prepared Pt-SAPO-11-10%catalyst had the highest i-dodecane yield of 80.1%compared to 55.3%of Pt-SAPO-11.Expectedly,this facile and cost-effective method is promising for the hydroisomerization of normal paraffin in the production of lubricant base oils.
文摘CoCu/TiO_2 catalysts promoted using alkali metals(Li, Na, K, Rb, and Cs) were prepared by the homogeneous deposition-precipitation method followed by the incipient wetness impregnation method. The influences of the alkali metals on the physicochemical properties of the CoCu/TiO_2 catalysts and the catalytic performance for CO_2 hydrogenation to long-chain hydrocarbons(C_(5+))were investigated in this work. According to the characterization of the catalysts based on X-ray photoelectron spectroscopy, X-ray diffraction, CO_2 temperature-programmed desorption(TPD), and H_2-TPD, the introduction of alkali metals could increase the CO_2 adsorption and decrease the H_2 chemisorption, which could suppress the formation of CH_4, enhance the production of C_(5+), and decrease the hydrogenation activity. Among all the promoters, the Na-modified CoCu/TiO_2 catalyst provided the maximum C_(5+) yield of 5.4%, with a CO_2 conversion of 18.4% and C_(5+) selectivity of42.1%, because it showed the strongest basicity and a slight decrease in the amount of H_2 desorption;it also exhibited excellent catalytic stability of more than 200 h.