期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合KPCA和多尺度纹理的IKONOS遥感影像决策树分类
被引量:
6
1
作者
谢丽军
张友静
+1 位作者
张子衡
陈李家
《遥感信息》
CSCD
2010年第3期88-93,共6页
城市地物类型多样,空间分布复杂,具有很强的非线性特征。核主成分分析(KPCA)通过将特征空间映射到高维核空间,可以表达图像像素间的高阶关系,因而可以提取图像的非线性特征,同时提供一组相互独立的主成分。本文在加入多尺度纹理特征的...
城市地物类型多样,空间分布复杂,具有很强的非线性特征。核主成分分析(KPCA)通过将特征空间映射到高维核空间,可以表达图像像素间的高阶关系,因而可以提取图像的非线性特征,同时提供一组相互独立的主成分。本文在加入多尺度纹理特征的基础上,以应用地物分布的空间细节信息;且利用核主成分分析(KP-CA)方法对光谱和纹理量提取非线性特征信息,增大类别之间的可分性;并结合决策树分类方法对IKONOS遥感影像分类。实验结果表明:KPCA能很好提取地物之间的非线性特征,结合KPCA和多尺度纹理的决策树分类方法能有效地提取地物类型,提取精度为79.3%,KAPPA系数为0.763.
展开更多
关键词
核主成分分析(KPCA)
多尺度纹理
IKONOS
决策树
下载PDF
职称材料
题名
结合KPCA和多尺度纹理的IKONOS遥感影像决策树分类
被引量:
6
1
作者
谢丽军
张友静
张子衡
陈李家
机构
河海大学水文水资源学院
河海大学水文水资源及水利工程国家重点实验室
出处
《遥感信息》
CSCD
2010年第3期88-93,共6页
基金
国家自然科学基金重点项目(40830639)
文摘
城市地物类型多样,空间分布复杂,具有很强的非线性特征。核主成分分析(KPCA)通过将特征空间映射到高维核空间,可以表达图像像素间的高阶关系,因而可以提取图像的非线性特征,同时提供一组相互独立的主成分。本文在加入多尺度纹理特征的基础上,以应用地物分布的空间细节信息;且利用核主成分分析(KP-CA)方法对光谱和纹理量提取非线性特征信息,增大类别之间的可分性;并结合决策树分类方法对IKONOS遥感影像分类。实验结果表明:KPCA能很好提取地物之间的非线性特征,结合KPCA和多尺度纹理的决策树分类方法能有效地提取地物类型,提取精度为79.3%,KAPPA系数为0.763.
关键词
核主成分分析(KPCA)
多尺度纹理
IKONOS
决策树
Keywords
kernel principal component analysis
multi-scale texture
IKONOS
decision tree
分类号
TP79 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合KPCA和多尺度纹理的IKONOS遥感影像决策树分类
谢丽军
张友静
张子衡
陈李家
《遥感信息》
CSCD
2010
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部