Although CRISPR/Cas9-mediated gene editing is widely applied to mimic human disorders,whether acute manipulation of disease-causing genes in the brain leads to behavioral abnormalities in non-human primates remains to...Although CRISPR/Cas9-mediated gene editing is widely applied to mimic human disorders,whether acute manipulation of disease-causing genes in the brain leads to behavioral abnormalities in non-human primates remains to be determined.Here we induced genetic mutations in MECP2,a critical gene linked to Rett syndrome(RTT)and autism spectrum disorders(ASD),in the hippocampus(DG and CA1–4)of adolescent rhesus monkeys(Macaca mulatta)in vivo via adeno-associated virus(AAV)-delivered Staphylococcus aureus Cas9 with small guide RNAs(sg RNAs)targeting MECP2.In comparison to monkeys injected with AAV-Sa Cas9 alone(n=4),numerous autistic-like behavioral abnormalities were identified in the AAV-Sa Cas9-sg MECP2-injected monkeys(n=7),including social interaction deficits,abnormal sleep patterns,insensitivity to aversive stimuli,abnormal hand motions,and defective social reward behaviors.Furthermore,some aspects of ASD and RTT,such as stereotypic behaviors,did not appear in the MECP2 gene-edited monkeys,suggesting that different brain areas likely contribute to distinct ASD symptoms.This study showed that acute manipulation of disease-causing genes via in vivo gene editing directly led to behavioral changes in adolescent primates,paving the way for the rapid generation of genetically engineered non-human primate models for neurobiological studies and therapeutic development.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province (2019B03035001)the National Natural Science Foundation of China (81941014, 31625013, 91732302, 81471312, 81771387, 81460352, 81500983, 31700897, 31700910, 31800901, 31700897, 31960178, and 81460352)+7 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (XDBS32060200)the Shanghai Brain-Intelligence Project from the Science and Technology Commission of the Shanghai Municipality (16JC1420501)the Shanghai Municipal Science and Technology Major Project (2018SHZDZX05)the Applied Basic Research Programs of Science and Technology Commission Foundation of Yunnan Province (2017FB109, 2018FB052, 2018FB053, and 2019FA007)the China Postdoctoral Science Foundation (2018M631105)the CAS ‘‘Light of West China” Programthe National Key R&D Program of China (2018YFA0801403)the Key Scientific and Technological Projects of Guangdong Province (2018B030335001)。
文摘Although CRISPR/Cas9-mediated gene editing is widely applied to mimic human disorders,whether acute manipulation of disease-causing genes in the brain leads to behavioral abnormalities in non-human primates remains to be determined.Here we induced genetic mutations in MECP2,a critical gene linked to Rett syndrome(RTT)and autism spectrum disorders(ASD),in the hippocampus(DG and CA1–4)of adolescent rhesus monkeys(Macaca mulatta)in vivo via adeno-associated virus(AAV)-delivered Staphylococcus aureus Cas9 with small guide RNAs(sg RNAs)targeting MECP2.In comparison to monkeys injected with AAV-Sa Cas9 alone(n=4),numerous autistic-like behavioral abnormalities were identified in the AAV-Sa Cas9-sg MECP2-injected monkeys(n=7),including social interaction deficits,abnormal sleep patterns,insensitivity to aversive stimuli,abnormal hand motions,and defective social reward behaviors.Furthermore,some aspects of ASD and RTT,such as stereotypic behaviors,did not appear in the MECP2 gene-edited monkeys,suggesting that different brain areas likely contribute to distinct ASD symptoms.This study showed that acute manipulation of disease-causing genes via in vivo gene editing directly led to behavioral changes in adolescent primates,paving the way for the rapid generation of genetically engineered non-human primate models for neurobiological studies and therapeutic development.