期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
岩石岩性轻量化网络识别方法及其隧道工程应用 被引量:2
1
作者 凌同华 陈梓浓 +2 位作者 张胜 阳标 张亮 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第9期3604-3615,共12页
在隧道工程地质勘察中,需要对岩石岩性进行判断和识别,以便开展工程岩体定量分析及工程地质安全评价。鉴于目前岩石岩性识别过程中存在主观性强、周期性长等问题,结合岩石表面岩性特征信息,提出基于MobileNetV3轻量化网络模型的岩石岩... 在隧道工程地质勘察中,需要对岩石岩性进行判断和识别,以便开展工程岩体定量分析及工程地质安全评价。鉴于目前岩石岩性识别过程中存在主观性强、周期性长等问题,结合岩石表面岩性特征信息,提出基于MobileNetV3轻量化网络模型的岩石岩性快速识别方法。首先采集工程中常见的20类不同岩性的岩石图像样本并搭建图像数据集,通过构建MobileNetV3网络模型和迁移学习方法对岩石图像进行训练,获得MobileNetV3岩石岩性识别模型;然后,将MobileNetV3岩性识别模型与EfficientNet-B0,Xception和Inception-ResNet-v2网络模型的岩性识别结果进行对比,从而评估其训练效果。此外,采用MobileNet网络替换SSD模型的主干特征提取网络,构建轻量化MobileNet-SSD目标检测模型对岩石图像进行检测与识别。结果表明,MobileNetV3网络模型识别岩石岩性的准确率为98.2%,模型大小仅为12 MB,对测试集上单张图像从输入到输出识别结果的平均时间为812 ms;与其他模型相比,该模型在识别精度、模型大小和识别时间上,都具有一定优势;通过MobileNet-SSD目标检测模型,可以实现对岩石目标的定位以及多种岩石同时识别。将MobileNetV3网络模型应用于隧道掌子面岩石岩性识别中,对不同岩性以及同一岩性不同完整程度的隧道掌子面岩石,模型有较好的识别效果。本研究成果有助于提高卷积神经网络模型的可移植性以及隧道工程离线环境下岩石岩性的快速准确识别。 展开更多
关键词 隧道工程 岩性识别模型 轻量化网络 岩石岩性 目标检测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部