Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measure...Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.展开更多
On the basis of the objective functions,dithering optimization techniques can be divided into the intensity-based optimization technique and the phase-based optimization technique.However,both types of techniques are ...On the basis of the objective functions,dithering optimization techniques can be divided into the intensity-based optimization technique and the phase-based optimization technique.However,both types of techniques are spatial-domain optimization techniques,while their measurement performances are essentially determined by the harmonic components in the frequency domain.In this paper,a novel genetic optimization technique in the frequency domain is proposed for highquality fringe generation.In addition,to handle the time-consuming difficulty of genetic algorithm(GA),we first optimize a binary patch,then join the optimal binary patches together according to periodicity and symmetry so as to generate a full-size pattern.It is verified that the proposed technique can significantly enhance the measured performance and ensure the robustness to various amounts of defocusing.展开更多
Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the pro...Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.展开更多
高动态范围图像(high dynamic range image)指的是扩大了景物可分辨的光照范围的图像。在HDRI成像中动态范围是难以量化测量的,必须将对动态范围的计算转化为其它易于计算的像质评价函数。HDRI图像的像质评价和普通图像的像质评价存在...高动态范围图像(high dynamic range image)指的是扩大了景物可分辨的光照范围的图像。在HDRI成像中动态范围是难以量化测量的,必须将对动态范围的计算转化为其它易于计算的像质评价函数。HDRI图像的像质评价和普通图像的像质评价存在着较大不同。比较了几种像质评价的方法后,提出了利用图像的熵作为标准进行高动态范围成像评价的方法。利用一种自然图像的概率模型对图像的熵与成像动态范围之间的关系进行了数值模拟,得到了具有普遍意义上的理想成像动态范围的计算公式,公式指出了对自然景物完善成像所需的最大动态范围;给出了图像熵与动态范围之间的关系。利用这种关系可以经由计算图像的熵来对系统的动态范围特性做出评价。这种评价方法在指导高动态范围成像系统的设计,以及高动态范围成像系统的测试中将发挥重要的作用。展开更多
基金Project supported by the Science and Technology Major Projects of Zhejiang Province,China(Grant No.2013C03043-5)
文摘Digital structured light (SL) profilometry is increasingly used in three-dimensional (3D) measurement technology. However, the nonlinearity of the off-the-shelf projectors and cameras seriously reduces the measurement accuracy. In this paper, first, we review the nonlinear effects of the projector-camera system in the phase-shifting structured light depth measurement method. We show that high order harmonic wave components lead to phase error in the phase-shifting method. Then a practical method based on frequency domain filtering is proposed for nonlinear error reduction. By using this method, the nonlinear calibration of the SL system is not required. Moreover, both the nonlinear effects of the projector and the camera can be effectively reduced. The simulations and experiments have verified our nonlinear correction method.
基金Project supported by the Science and Technology Major Projects of Zhejiang Province,China(Grant No.2017C31080)
文摘On the basis of the objective functions,dithering optimization techniques can be divided into the intensity-based optimization technique and the phase-based optimization technique.However,both types of techniques are spatial-domain optimization techniques,while their measurement performances are essentially determined by the harmonic components in the frequency domain.In this paper,a novel genetic optimization technique in the frequency domain is proposed for highquality fringe generation.In addition,to handle the time-consuming difficulty of genetic algorithm(GA),we first optimize a binary patch,then join the optimal binary patches together according to periodicity and symmetry so as to generate a full-size pattern.It is verified that the proposed technique can significantly enhance the measured performance and ensure the robustness to various amounts of defocusing.
基金Project supported by the Zhejiang Provincial Welfare Technology Applied Research Project,China(Grant No.2017C31080)
文摘Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.
文摘高动态范围图像(high dynamic range image)指的是扩大了景物可分辨的光照范围的图像。在HDRI成像中动态范围是难以量化测量的,必须将对动态范围的计算转化为其它易于计算的像质评价函数。HDRI图像的像质评价和普通图像的像质评价存在着较大不同。比较了几种像质评价的方法后,提出了利用图像的熵作为标准进行高动态范围成像评价的方法。利用一种自然图像的概率模型对图像的熵与成像动态范围之间的关系进行了数值模拟,得到了具有普遍意义上的理想成像动态范围的计算公式,公式指出了对自然景物完善成像所需的最大动态范围;给出了图像熵与动态范围之间的关系。利用这种关系可以经由计算图像的熵来对系统的动态范围特性做出评价。这种评价方法在指导高动态范围成像系统的设计,以及高动态范围成像系统的测试中将发挥重要的作用。