期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于显著增强分层双线性池化网络的细粒度图像分类
被引量:
5
1
作者
陈珺莹
陈莹
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2021年第2期241-249,共9页
分层双线性池化网络考虑了中间卷积层的特征交互,对细粒度图像起到了良好的分类效果,但它对一幅图像包括无关背景在内的所有区域激活都进行了特征交互,会影响分类性能.针对该问题,提出一种显著增强的分层双线性池化方法.该方法在分层双...
分层双线性池化网络考虑了中间卷积层的特征交互,对细粒度图像起到了良好的分类效果,但它对一幅图像包括无关背景在内的所有区域激活都进行了特征交互,会影响分类性能.针对该问题,提出一种显著增强的分层双线性池化方法.该方法在分层双线性池化网络的基础上,结合显著性检测网络生成注意力图,使用注意力图与特征提取网络进行交互实现对显著区域的信息增强,减少了背景等无关信息的影响,提高了分类性能.在3个常用的细粒度图像数据集CUB-200-2011,Stanford Cars和FGVC-Aircraft上均进行了实验,分类准确率分别为86.5%,92.9%和90.8%,与当前其他主流方法相比,取得了良好的分类效果.
展开更多
关键词
细粒度图像分类
显著性检测
区域信息增强
分层双线性池化
下载PDF
职称材料
题名
基于显著增强分层双线性池化网络的细粒度图像分类
被引量:
5
1
作者
陈珺莹
陈莹
机构
江南大学轻工过程先进控制教育部重点实验室
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2021年第2期241-249,共9页
基金
国家自然科学基金(61573168).
文摘
分层双线性池化网络考虑了中间卷积层的特征交互,对细粒度图像起到了良好的分类效果,但它对一幅图像包括无关背景在内的所有区域激活都进行了特征交互,会影响分类性能.针对该问题,提出一种显著增强的分层双线性池化方法.该方法在分层双线性池化网络的基础上,结合显著性检测网络生成注意力图,使用注意力图与特征提取网络进行交互实现对显著区域的信息增强,减少了背景等无关信息的影响,提高了分类性能.在3个常用的细粒度图像数据集CUB-200-2011,Stanford Cars和FGVC-Aircraft上均进行了实验,分类准确率分别为86.5%,92.9%和90.8%,与当前其他主流方法相比,取得了良好的分类效果.
关键词
细粒度图像分类
显著性检测
区域信息增强
分层双线性池化
Keywords
fine-grained classification
saliency detection
regional information enhancement
hierarchical bilinear pooling
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于显著增强分层双线性池化网络的细粒度图像分类
陈珺莹
陈莹
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2021
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部