期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
SA-GA-CNN-LSTM新型冷暖系统负荷预测方法研究
被引量:
2
1
作者
陈石毓
李壮举
+1 位作者
刘浩
陈梦依
《中国测试》
CAS
北大核心
2023年第9期115-122,共8页
为提高预测精度,给新型相变储能供冷供暖系统提供准确的储能参考,结合该系统的特点,提出新的负荷预测方法。该方法先对数据进行模糊C均值聚类,然后将聚类结果分别传入由遗传算法(genetic algorithm,GA)、自注意力机制(self-attention,SA...
为提高预测精度,给新型相变储能供冷供暖系统提供准确的储能参考,结合该系统的特点,提出新的负荷预测方法。该方法先对数据进行模糊C均值聚类,然后将聚类结果分别传入由遗传算法(genetic algorithm,GA)、自注意力机制(self-attention,SA)和卷积长短时记忆神经网络(CNN-LSTM)相结合的模型进行预测。采用北京昌平某变电所的相变储能冷暖系统的实测数据进行训练并确定了该预测模型,最后用该模型进行负荷预测,预测数据和实测数据对比,证明了该模型的有效性。与单一神经网络模型CNN、LSTM和混合神经网络模型CNN-LSTM、GA-CNNLSTM相比,所提出的SA-GA-CNN-LSTM神经网络模型的预测精度最高。在平均绝对误差(MAPE)指标下,比表现较好的单一神经网络模型LSTM误差降低2.32%,比混合神经网络模型CNN-LSTM误差降低1.49%。
展开更多
关键词
相变储能
负荷预测
卷积神经网络
长短时记忆神经网络
自注意力机制
下载PDF
职称材料
题名
SA-GA-CNN-LSTM新型冷暖系统负荷预测方法研究
被引量:
2
1
作者
陈石毓
李壮举
刘浩
陈梦依
机构
北京建筑大学
昆士兰大学
出处
《中国测试》
CAS
北大核心
2023年第9期115-122,共8页
文摘
为提高预测精度,给新型相变储能供冷供暖系统提供准确的储能参考,结合该系统的特点,提出新的负荷预测方法。该方法先对数据进行模糊C均值聚类,然后将聚类结果分别传入由遗传算法(genetic algorithm,GA)、自注意力机制(self-attention,SA)和卷积长短时记忆神经网络(CNN-LSTM)相结合的模型进行预测。采用北京昌平某变电所的相变储能冷暖系统的实测数据进行训练并确定了该预测模型,最后用该模型进行负荷预测,预测数据和实测数据对比,证明了该模型的有效性。与单一神经网络模型CNN、LSTM和混合神经网络模型CNN-LSTM、GA-CNNLSTM相比,所提出的SA-GA-CNN-LSTM神经网络模型的预测精度最高。在平均绝对误差(MAPE)指标下,比表现较好的单一神经网络模型LSTM误差降低2.32%,比混合神经网络模型CNN-LSTM误差降低1.49%。
关键词
相变储能
负荷预测
卷积神经网络
长短时记忆神经网络
自注意力机制
Keywords
phase change energy storage
load forecasting
convolutional neural network
long and short term memory neural network
self attention mechanism
分类号
TM744 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
SA-GA-CNN-LSTM新型冷暖系统负荷预测方法研究
陈石毓
李壮举
刘浩
陈梦依
《中国测试》
CAS
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部