期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Transformer深度学习模型在医学图像分割中的研究进展
1
作者 周腊珍 陈红池 +1 位作者 李秋霞 李坊佐 《中国生物医学工程学报》 CAS CSCD 北大核心 2024年第4期467-476,共10页
医学图像的准确分割在现代临床影像检查、精准诊断和治疗规划中意义至关重要。近10年来,卷积神经网络(CNN)凭借其独特的特征提取能力,在医学图像分割领域成绩显著。CNN架构中存在的局部感受野和固有归纳偏置局限,限制其对图像中远程依... 医学图像的准确分割在现代临床影像检查、精准诊断和治疗规划中意义至关重要。近10年来,卷积神经网络(CNN)凭借其独特的特征提取能力,在医学图像分割领域成绩显著。CNN架构中存在的局部感受野和固有归纳偏置局限,限制其对图像中远程依赖关系的有效建模。近年来,Transformer架构依赖其对全局信息的捕获能力,有助于建模长距离的依赖关系并挖掘语义信息,在生物医学图像分割领域展示出卓越的性能和巨大潜力。在此,对Transformer架构的组成及其在医学图像分割中的应用进行了全面综述,从全监督、无监督和半监督的角度出发,对Transformer架构在医学图像的腹部多器官分割、心脏分割和脑肿瘤分割中的运用价值及性能进行了归纳分析,并对Transformer模型在分割任务中存在的局限不足进行了概括总结,最后对其未来发展趋势及优化路径进行了探讨展望。 展开更多
关键词 TRANSFORMER 图像分割 卷积神经网络 医学图像
下载PDF
基于空洞空间金字塔池化的U-Net网络在肺部图像分割上的应用 被引量:2
2
作者 夏文静 周腊珍 +3 位作者 陈红池 李坊佐 吴頲 张翔 《中国医学物理学杂志》 CSCD 2023年第3期336-341,共6页
目的:胸部X线图像中肺野的自动分割是相关疾病筛查和诊断的关键步骤,为了适应计算机辅助诊断系统的要求,提出一种基于空洞空间金字塔池化的U-Net网络对胸部X线图像中肺野进行自动分割。方法:在编码和解码之间引入带有空洞卷积的空间金... 目的:胸部X线图像中肺野的自动分割是相关疾病筛查和诊断的关键步骤,为了适应计算机辅助诊断系统的要求,提出一种基于空洞空间金字塔池化的U-Net网络对胸部X线图像中肺野进行自动分割。方法:在编码和解码之间引入带有空洞卷积的空间金字塔池化用于扩大接受域;同时,在多个尺度上获取图像上下文信息,用于从胸片中分割肺野,使用Montgomery数据集及深圳数据集进行验证。根据医学图像分割常用指标准确性、Dice相似系数及交并比评价基于空洞空间金字塔池化的U-Net网络分割肺野的性能。结果:验证准确性为98.29%,Dice相似系数为96.61%,交并比为93.47%。结论:本文提出一种基于空洞空间金字塔池化的U-Net网络用于分割肺野,相较于其他方法学习到更多边缘分割特征,取得更好的分割结果。 展开更多
关键词 胸部X线图像 肺野分割 U-Net 空洞空间金字塔池化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部