期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习长短期记忆网络结构的地铁站短时客流量预测
被引量:
34
1
作者
李梅
李静
+2 位作者
魏子健
王思达
陈赖谨
《城市轨道交通研究》
北大核心
2018年第11期42-46,77,共6页
准确预测地铁站短时客流量,有助于提前开展安全预警工作,快速做出人员疏导方案。根据上海轨道交通2016年3月2. 4亿条刷卡数据,以及该时间段的天气数据,利用Pearson相关分析法提取了客流量的7个外部天气影响因子,以及3个基于历史数据的...
准确预测地铁站短时客流量,有助于提前开展安全预警工作,快速做出人员疏导方案。根据上海轨道交通2016年3月2. 4亿条刷卡数据,以及该时间段的天气数据,利用Pearson相关分析法提取了客流量的7个外部天气影响因子,以及3个基于历史数据的内部影响因子。通过对数据的分析,综合考虑工作日、非工作日和高峰时段对客流的影响,提取2个内部显著影响因子。以上海轨道交通莘庄站为例,提出了一种基于深度学习长短期记忆(LSTM)网络结构的地铁站短时客流预测方法。最后,将预测结果与典型时间序列预测算法MLR(多元线性回归)和BP(反向传播)神经网络进行对比,验证了LSTM网络在地铁站短时客流量预测中具有更高的准确性和很好的适用性。
展开更多
关键词
地铁站
短时客流量预测
深度学习
长短期记忆网络
下载PDF
职称材料
题名
基于深度学习长短期记忆网络结构的地铁站短时客流量预测
被引量:
34
1
作者
李梅
李静
魏子健
王思达
陈赖谨
机构
北京交通大学经济管理学院
出处
《城市轨道交通研究》
北大核心
2018年第11期42-46,77,共6页
基金
国家自然科学基金"青年基金"项目(71103014)
国家级大学生创新创业训练计划项目(170140032)
+1 种基金
北京市哲社办课题(14JGC095)
北京市交通委员会科技课题(B17M00080)
文摘
准确预测地铁站短时客流量,有助于提前开展安全预警工作,快速做出人员疏导方案。根据上海轨道交通2016年3月2. 4亿条刷卡数据,以及该时间段的天气数据,利用Pearson相关分析法提取了客流量的7个外部天气影响因子,以及3个基于历史数据的内部影响因子。通过对数据的分析,综合考虑工作日、非工作日和高峰时段对客流的影响,提取2个内部显著影响因子。以上海轨道交通莘庄站为例,提出了一种基于深度学习长短期记忆(LSTM)网络结构的地铁站短时客流预测方法。最后,将预测结果与典型时间序列预测算法MLR(多元线性回归)和BP(反向传播)神经网络进行对比,验证了LSTM网络在地铁站短时客流量预测中具有更高的准确性和很好的适用性。
关键词
地铁站
短时客流量预测
深度学习
长短期记忆网络
Keywords
metro station
short-time passenger flow forecasting
deep learning
long term and short term memory network(LSTM)
分类号
U293.13 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习长短期记忆网络结构的地铁站短时客流量预测
李梅
李静
魏子健
王思达
陈赖谨
《城市轨道交通研究》
北大核心
2018
34
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部