Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is ...Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is given for different ratios of the extraordinary index to the ordinary refractive index. It has been found that the continuity and the self-bending effect of Ai GB become weaker when the ratio increases. From the figure of the maximum intensity of Ai GB, one can see that the maximum intensity is not monotone decreasing due to the anisotropic effect of the crystals. The intensity distribution of Ai GB in different distribution factors is shown. The Ai GB converges toward a Gaussian beam as the distribution factor increases.展开更多
The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtai...The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.展开更多
Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different a...Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy–Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy–Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure.展开更多
By applying the ABCD matrix method, we report the propagating properties of the rotating elliptical Gaussian beams(REGBs) from the right-handed material(RHM) to the left-handed material(LHM). Based on the propag...By applying the ABCD matrix method, we report the propagating properties of the rotating elliptical Gaussian beams(REGBs) from the right-handed material(RHM) to the left-handed material(LHM). Based on the propagation equation, we obtain the intensity distributions of the REGBs during the propagation. It is found that the rotating direction of the REGBs is opposite in the RHM and the LHM, and the rotation angles tend to be π /2 as the propagation distance is long enough.Then we analyze the relationship between the refractive index and the rotating velocity. Furthermore, the energy flow and the angular momentum(AM) of the REGBs which can rotate are also obtained.展开更多
By investigating the cross-spectral density of partially coherent multi-rotating elliptical Gaussian beams (REGBs) that propagate through a focusing optical system, we obtain the radiation force on a Rayleigh partic...By investigating the cross-spectral density of partially coherent multi-rotating elliptical Gaussian beams (REGBs) that propagate through a focusing optical system, we obtain the radiation force on a Rayleigh particle. The radiation force distribution is studied under different beam indexes, coherence widths, and elliptical ratios of the partially coherent multi REGBs. The transverse and the longitudinal trapping ranges can increase at the focal plane by increasing the beam index or decreasing the coherence width. The range of the trapped particle radii increases as the elliptical ratio increases. Furthermore, we analyze the trapping stability.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 10904041)the Foundation for the Author of Guangdong Provincial Excellent Doctoral Dissertation+6 种基金China(Grant No.SYBZZXM201227)the Foundation of Cultivating Outstanding Young Scholars("ThousandHundredTen"Program)of Guangdong Province in Chinathe Fund from the Key Laboratory of Geospace EnvironmentUniversity of Science and Technology of ChinaChinese Academy of Sciences
文摘Under the paraxial approximation, the analytical propagation expression of an Airy–Gaussian beam(Ai GB) in uniaxial crystals orthogonal to the optical axis is investigated. The propagation dynamics of the Ai GB is given for different ratios of the extraordinary index to the ordinary refractive index. It has been found that the continuity and the self-bending effect of Ai GB become weaker when the ratio increases. From the figure of the maximum intensity of Ai GB, one can see that the maximum intensity is not monotone decreasing due to the anisotropic effect of the crystals. The intensity distribution of Ai GB in different distribution factors is shown. The Ai GB converges toward a Gaussian beam as the distribution factor increases.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374108,11374107,10904041,and 11547212)the Foundation of Cultivating Outstanding Young Scholars of Guangdong Province,China+2 种基金the CAS Key Laboratory of Geospace Environment,University of Science and Technology of Chinathe National Training Program of Innovation and Entrepreneurship for Undergraduates(Grant No.2015093)the Science and Technology Projects of Guangdong Province,China(Grant No.2013B031800011)
文摘The propagation dynamics of the Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis has been investigated analytically and numerically. The propagation expression of the beams has been obtained. The propagation features of the Airy Gaussian vortex beams are shown with changes of the distribution factor and the ratio of the extraordinary refractive index to the ordinary refractive index. The correlations between the ratio and the maximum intensity value during the propagation, and its appearing distance have been investigated.
基金supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 10904041)the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation(Grant No.SYBZZXM201227)+1 种基金the Foundation of Cultivating Outstanding Young Scholars("Thousand,Hundred,Ten"Program)of Guangdong Province,ChinaCAS Key Laboratory of Geospace Environment,University of Science and Technology of China
文摘Based on the nonlinear Schr o¨dinger equation, the interactions of the two Airy–Gaussian components in the incidence are analyzed in saturable media, under the circumstances of the same amplitude and different amplitudes, respectively. It is found that the interaction can be both attractive and repulsive depending on the relative phase. The smaller the interval between two Airy–Gaussian components in the incidence is, the stronger the intensity of the interaction. However, with the equal amplitude, the symmetry is shown and the change of quasi-breathers is opposite in the in-phase case and out-of-phase case. As the distribution factor is increased, the phenomena of the quasi-breather and the self-accelerating of the two Airy–Gaussian components are weakened. When the amplitude is not equal, the image does not have symmetry. The obvious phenomenon of the interaction always arises on the side of larger input power in the incidence. The maximum intensity image is also simulated. Many of the characteristics which are contained within other images can also be concluded in this figure.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374108 and 10904041)the Foundation for the Author of Guangdong Provincial Excellent Doctoral Dissertation(Grant No.SYBZZXM201227)+4 种基金the Foundation of Cultivating Outstanding Young Scholars("ThousandHundredTen"Program)of Guangdong Province in Chinathe Fund from the CAS Key Laboratory of Geospace EnvironmentUniversity of Science and Technology of China
文摘By applying the ABCD matrix method, we report the propagating properties of the rotating elliptical Gaussian beams(REGBs) from the right-handed material(RHM) to the left-handed material(LHM). Based on the propagation equation, we obtain the intensity distributions of the REGBs during the propagation. It is found that the rotating direction of the REGBs is opposite in the RHM and the LHM, and the rotation angles tend to be π /2 as the propagation distance is long enough.Then we analyze the relationship between the refractive index and the rotating velocity. Furthermore, the energy flow and the angular momentum(AM) of the REGBs which can rotate are also obtained.
基金supported by the National Natural Science Foundation of China (Nos. 11374108, 10904041, and 11374107)the Foundation for the Author of Guangdong Province Excellent Doctoral Dissertation (No. SYBZZXM201227)+1 种基金the Foundation of Cultivating Outstanding Young Scholars (“Thousand, Hundred, Ten” Program) of Guangdong Province in ChinaSupport was also provided by the CAS Key Laboratory of Geospace Environment, University of Science and Technology of China
文摘By investigating the cross-spectral density of partially coherent multi-rotating elliptical Gaussian beams (REGBs) that propagate through a focusing optical system, we obtain the radiation force on a Rayleigh particle. The radiation force distribution is studied under different beam indexes, coherence widths, and elliptical ratios of the partially coherent multi REGBs. The transverse and the longitudinal trapping ranges can increase at the focal plane by increasing the beam index or decreasing the coherence width. The range of the trapped particle radii increases as the elliptical ratio increases. Furthermore, we analyze the trapping stability.