期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Seq2seq模型的多特征短期母线负荷预测 被引量:2
1
作者 陈逸枞 张大海 +1 位作者 于浩 王玉清 《电力系统及其自动化学报》 CSCD 北大核心 2023年第1期1-6,35,共7页
母线负荷短期预测对电力系统调度运行及电力现货交易市场具有重要意义,由于母线负荷受到复杂多因素的影响,单独采用母线负荷历史数据进行预测不能取得很好的效果。为提升多因素影响下母线负荷预测的准确率,本文结合特征工程和深度学习法... 母线负荷短期预测对电力系统调度运行及电力现货交易市场具有重要意义,由于母线负荷受到复杂多因素的影响,单独采用母线负荷历史数据进行预测不能取得很好的效果。为提升多因素影响下母线负荷预测的准确率,本文结合特征工程和深度学习法,对母线负荷的影响因素进行斯皮尔曼相关性分析,设计时间连续性周期编码;对Seq2seq模型的编码器和解码器设置不同的特征组进行消融实验;将实验结果与采用离散小波变换分解提取特征的方法进行对比,结果表明,本文提出的特征工程结合深度学习Seq2seq框架的母线负荷短期预测效果更佳。 展开更多
关键词 母线负荷 Seq2seq 特征工程 编码器 解码器
下载PDF
基于SSA-Bi-LSTM神经网络的母线负荷预测方法 被引量:7
2
作者 胡如乐 陈逸枞 +3 位作者 张大海 张沛 王舒杨 喻芸 《广东电力》 2022年第2期19-26,共8页
为了提高母线负荷预测精度,针对长短期记忆(long short term memory,LSTM)神经网络在母线负荷预测时存在对负荷规律提取不足导致精度下降、超参数设置依赖经验等问题,首先构建LSTM神经网络的变体网络———双向长短期记忆(Bi-directiona... 为了提高母线负荷预测精度,针对长短期记忆(long short term memory,LSTM)神经网络在母线负荷预测时存在对负荷规律提取不足导致精度下降、超参数设置依赖经验等问题,首先构建LSTM神经网络的变体网络———双向长短期记忆(Bi-directional LSTM,Bi-LSTM)神经网络,捕获时间序列未来可用的信息。然后采用麻雀搜索算法(sparrow search algorithm,SSA)搜索最优超参数,得到最优学习率、隐层神经元数目和迭代次数等。以实际10kV母线数据对SSA-Bi-LSTM神经网络模型进行验证,并与Bi-LSTM神经网络和BP神经网络进行对比,结果表明SSA-Bi-LSTM神经网络模型的预测效果更佳。 展开更多
关键词 母线负荷 双向长短期记忆神经网络 负荷预测 麻雀搜索算法 长短期记忆神经网络
下载PDF
基于DWT-MOSMA-SVM的多目标优化短期母线负荷预测 被引量:10
3
作者 陈逸枞 张大海 +1 位作者 李宇欣 王颖 《电力建设》 CSCD 北大核心 2023年第3期49-55,共7页
母线负荷基数小,波动性和不确定性大,随着光伏、风电等可再生能源的接入,母线负荷受天气等随机性因素的影响增加,母线负荷的高精度预测受到很大影响。针对小样本场景下母线负荷预测问题,提出了一种基于离散小波变换-多目标黏菌算法-支... 母线负荷基数小,波动性和不确定性大,随着光伏、风电等可再生能源的接入,母线负荷受天气等随机性因素的影响增加,母线负荷的高精度预测受到很大影响。针对小样本场景下母线负荷预测问题,提出了一种基于离散小波变换-多目标黏菌算法-支持向量机(discrete wavelet transformation-multiple objective slime mould algorithm-support vector machine, DWT-MOSMA-SVM)的多目标优化短期母线负荷预测方法。首先采用离散小波变换对母线负荷数据进行处理;然后兼顾预测的精度和稳定性两个目标函数,采用多目标黏菌算法对支持向量机的惩罚因子和核函数参数进行优化;最后在优化所得的Pareto前沿面上选择Pareto最优解,以此搭建支持向量机(support vector machine, SVM)预测模型进行训练,并将预测结果与长短期记忆网络(long short-term memory, LSTM)、未优化的SVM以及多目标黏菌算法(multi-objective slime mold algorithm, MOSSA)优化的SVM模型预测结果进行对比。实验结果表明,提出的MOSMA-SVM模型的预测精度和稳定性更佳。 展开更多
关键词 母线负荷预测 支持向量机(SVM) 多目标黏菌算法(MOSMA) 多目标优化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部