为了提高母线负荷预测精度,针对长短期记忆(long short term memory,LSTM)神经网络在母线负荷预测时存在对负荷规律提取不足导致精度下降、超参数设置依赖经验等问题,首先构建LSTM神经网络的变体网络———双向长短期记忆(Bi-directiona...为了提高母线负荷预测精度,针对长短期记忆(long short term memory,LSTM)神经网络在母线负荷预测时存在对负荷规律提取不足导致精度下降、超参数设置依赖经验等问题,首先构建LSTM神经网络的变体网络———双向长短期记忆(Bi-directional LSTM,Bi-LSTM)神经网络,捕获时间序列未来可用的信息。然后采用麻雀搜索算法(sparrow search algorithm,SSA)搜索最优超参数,得到最优学习率、隐层神经元数目和迭代次数等。以实际10kV母线数据对SSA-Bi-LSTM神经网络模型进行验证,并与Bi-LSTM神经网络和BP神经网络进行对比,结果表明SSA-Bi-LSTM神经网络模型的预测效果更佳。展开更多
文摘为了提高母线负荷预测精度,针对长短期记忆(long short term memory,LSTM)神经网络在母线负荷预测时存在对负荷规律提取不足导致精度下降、超参数设置依赖经验等问题,首先构建LSTM神经网络的变体网络———双向长短期记忆(Bi-directional LSTM,Bi-LSTM)神经网络,捕获时间序列未来可用的信息。然后采用麻雀搜索算法(sparrow search algorithm,SSA)搜索最优超参数,得到最优学习率、隐层神经元数目和迭代次数等。以实际10kV母线数据对SSA-Bi-LSTM神经网络模型进行验证,并与Bi-LSTM神经网络和BP神经网络进行对比,结果表明SSA-Bi-LSTM神经网络模型的预测效果更佳。