基于Pockels效应的光学电压传感器(Optical Voltage Transducer,OVT),运行中不可避免地存在震动、元器件连接的老化与热胀冷缩等问题,导致光学器件的相互位置产生偏移,进而影响电光晶体的内电场分布。文中以基于会聚偏光干涉原理的110 ...基于Pockels效应的光学电压传感器(Optical Voltage Transducer,OVT),运行中不可避免地存在震动、元器件连接的老化与热胀冷缩等问题,导致光学器件的相互位置产生偏移,进而影响电光晶体的内电场分布。文中以基于会聚偏光干涉原理的110 k V纵向调制的OVT为例,进行了仿真分析与实验研究,发现当入射光发生±0.5°的偏移或电光晶体发生±1°的偏移时,分别引入约0.107%和0.124%的电场积分误差。由于OVT必须满足0.2%的准确度要求,上述影响不容忽视。为此提出了介质包裹法,将Al2O3陶瓷包裹在电光晶体外部,使电场积分误差分别降低至0.001%和0.003%。实验与应用的情况表明,介质包裹法简单、实用、有效。展开更多
文摘基于Pockels效应的光学电压传感器(Optical Voltage Transducer,OVT),运行中不可避免地存在震动、元器件连接的老化与热胀冷缩等问题,导致光学器件的相互位置产生偏移,进而影响电光晶体的内电场分布。文中以基于会聚偏光干涉原理的110 k V纵向调制的OVT为例,进行了仿真分析与实验研究,发现当入射光发生±0.5°的偏移或电光晶体发生±1°的偏移时,分别引入约0.107%和0.124%的电场积分误差。由于OVT必须满足0.2%的准确度要求,上述影响不容忽视。为此提出了介质包裹法,将Al2O3陶瓷包裹在电光晶体外部,使电场积分误差分别降低至0.001%和0.003%。实验与应用的情况表明,介质包裹法简单、实用、有效。