期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度复合卷积和图像分割融合的车道线检测算法
被引量:
2
1
作者
方遒
李伟林
+1 位作者
梁卓凡
陈韬阳
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2023年第8期792-802,共11页
在车道线检测任务中,由于车道线的特点和获取更大范围感受野的需求,空洞卷积被广泛使用.然而,为了获取大范围信息,空洞卷积会造成卷积点附近信息的丢失.针对以上问题,提出了一种基于多尺度复合卷积和图像分割融合的车道线检测算法.首先...
在车道线检测任务中,由于车道线的特点和获取更大范围感受野的需求,空洞卷积被广泛使用.然而,为了获取大范围信息,空洞卷积会造成卷积点附近信息的丢失.针对以上问题,提出了一种基于多尺度复合卷积和图像分割融合的车道线检测算法.首先将不同尺寸的空洞卷积、全卷积和标准卷积结合以弥补空洞卷积造成的信息丢失;然后通过语义分割和实例分割融合的图像分割融合模块来增强实例分割网络对全局特征的关注;最后,设计一个加权交叉熵损失函数对网络进行训练和优化.实验结果表明,算法在CULane数据集中的整体F1measure取得74.9%,整体性能优于比较算法,在多种挑战性环境中均有所提升.
展开更多
关键词
深度学习
实例分割
车道线检测
空洞卷积
下载PDF
职称材料
题名
基于多尺度复合卷积和图像分割融合的车道线检测算法
被引量:
2
1
作者
方遒
李伟林
梁卓凡
陈韬阳
机构
厦门理工学院福建省客车先进设计与制造重点实验室
厦门大学航空航天学院
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2023年第8期792-802,共11页
基金
福建省自然科学基金资助项目(2022J011247)。
文摘
在车道线检测任务中,由于车道线的特点和获取更大范围感受野的需求,空洞卷积被广泛使用.然而,为了获取大范围信息,空洞卷积会造成卷积点附近信息的丢失.针对以上问题,提出了一种基于多尺度复合卷积和图像分割融合的车道线检测算法.首先将不同尺寸的空洞卷积、全卷积和标准卷积结合以弥补空洞卷积造成的信息丢失;然后通过语义分割和实例分割融合的图像分割融合模块来增强实例分割网络对全局特征的关注;最后,设计一个加权交叉熵损失函数对网络进行训练和优化.实验结果表明,算法在CULane数据集中的整体F1measure取得74.9%,整体性能优于比较算法,在多种挑战性环境中均有所提升.
关键词
深度学习
实例分割
车道线检测
空洞卷积
Keywords
deep learning
instance segmentation
lane line detection
atrous convolution
分类号
TP391 [自动化与计算机技术—计算机应用技术]
U491.222 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度复合卷积和图像分割融合的车道线检测算法
方遒
李伟林
梁卓凡
陈韬阳
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部