目的:探讨重症监护病房(intensive care unit,ICU)获得性肌无力(ICU acquired weakness,ICUAW)患者肌肉超声回声与血浆炎性因子的相关性,以及其对ICUAW的诊断价值和预后的预测价值。方法:选择重庆市急救医疗中心ICU住院患者,分别在第1、...目的:探讨重症监护病房(intensive care unit,ICU)获得性肌无力(ICU acquired weakness,ICUAW)患者肌肉超声回声与血浆炎性因子的相关性,以及其对ICUAW的诊断价值和预后的预测价值。方法:选择重庆市急救医疗中心ICU住院患者,分别在第1、3、7天使用床旁超声检测患者肌肉回声,获得的总体肌肉回声评分(global muscle echogenicity score,GEM),测定血清白细胞介素-6(interleukin-6,IL-6)和降钙素原(procalcitonin,PCT)浓度,采用医学研究理事会肌力评分法(medical research council scales,MRC-ss)评估肌肉力量。根据患者入ICU第7天MRC-ss评分将患者分为ICUAW组和非ICUAW组,分析比较2组患者GEM、IL-6、PCT的差异及各指标的相关性。利用受试者工作特征(receiver operator characteristic,ROC)曲线分析以上参数对ICUAW诊断效能,分析GEM、IL-6、PCT对ICUAW患者的预测预后价值。结果:ICUAW组第3天GEM、第7天IL-6浓度、GEM高于非ICUAW组(P<0.05)。GEM与第7天IL-6水平呈正相关(r=0.221),第7天GEM与MRC-ss评分呈负相关(r=-0.581)。ROC曲线分析显示,第7天GEM对ICUAW有诊断预测价值,ROC曲线下面积(area under the curve,AUC)为0.838,使用GEM、IL-6、PCT联合诊断,AUC=0.885(P<0.05)。ICUAW组Barthel指数评分(Barthel index,BI)低于非ICUAW组,ICUAW组中总体肌肉超声回声评分(global muscle echogenicity score,GEM)高的患者BI低于GEM低的患者(P<0.05)。结论:ICU住院患者GEM与IL-6、PCT浓度相关,其对ICUAW具有一定的诊断价值,并能够预测ICUAW患者的预后。展开更多
水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域...水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域水质数据为样本,使用线性插值修补缺失数据和剔除的异常数据。使用灰色关联分析计算不同水质指标间的相关性,选择高相关性的水质指标以确定输入变量,并使用门控循环单元(Gated Recurrent Unit, GRU)预测不同的水质指标。将GRA-GRU的预测结果与反向传播神经网络(Back Propagation Neural Network, BPNN)、循环神经网络(Recurrent Neural Network, RNN)、长短期记忆神经网络(Long Short Term Memory, LSTM)、GRU及灰色关联分析-长短期记忆神经网络(Grey Relational Analysis-Long Short Term Memory, GRA-LSTM)进行对比分析,结果显示GRA-GRU在不同水质指标预测上具有较好的适应性,可以有效降低预测误差。其中,与其他模型相比,GRA-GRU预测的化学需氧量在均方根误差上分别降低了3.617%、0.681%、0.478%、1.505%和0.471%。展开更多
文摘目的:探讨重症监护病房(intensive care unit,ICU)获得性肌无力(ICU acquired weakness,ICUAW)患者肌肉超声回声与血浆炎性因子的相关性,以及其对ICUAW的诊断价值和预后的预测价值。方法:选择重庆市急救医疗中心ICU住院患者,分别在第1、3、7天使用床旁超声检测患者肌肉回声,获得的总体肌肉回声评分(global muscle echogenicity score,GEM),测定血清白细胞介素-6(interleukin-6,IL-6)和降钙素原(procalcitonin,PCT)浓度,采用医学研究理事会肌力评分法(medical research council scales,MRC-ss)评估肌肉力量。根据患者入ICU第7天MRC-ss评分将患者分为ICUAW组和非ICUAW组,分析比较2组患者GEM、IL-6、PCT的差异及各指标的相关性。利用受试者工作特征(receiver operator characteristic,ROC)曲线分析以上参数对ICUAW诊断效能,分析GEM、IL-6、PCT对ICUAW患者的预测预后价值。结果:ICUAW组第3天GEM、第7天IL-6浓度、GEM高于非ICUAW组(P<0.05)。GEM与第7天IL-6水平呈正相关(r=0.221),第7天GEM与MRC-ss评分呈负相关(r=-0.581)。ROC曲线分析显示,第7天GEM对ICUAW有诊断预测价值,ROC曲线下面积(area under the curve,AUC)为0.838,使用GEM、IL-6、PCT联合诊断,AUC=0.885(P<0.05)。ICUAW组Barthel指数评分(Barthel index,BI)低于非ICUAW组,ICUAW组中总体肌肉超声回声评分(global muscle echogenicity score,GEM)高的患者BI低于GEM低的患者(P<0.05)。结论:ICU住院患者GEM与IL-6、PCT浓度相关,其对ICUAW具有一定的诊断价值,并能够预测ICUAW患者的预后。
文摘水质指标具有多元相关性、时序性和非线性的特点,为有效预测河流水质变化,针对水质数据存在缺失和异常的问题,提出基于灰色关联分析-门控循环单元(Grey Relational Analysis-Gated Recurrent Unit, GRA-GRU)的水质预测模型。以淮河流域水质数据为样本,使用线性插值修补缺失数据和剔除的异常数据。使用灰色关联分析计算不同水质指标间的相关性,选择高相关性的水质指标以确定输入变量,并使用门控循环单元(Gated Recurrent Unit, GRU)预测不同的水质指标。将GRA-GRU的预测结果与反向传播神经网络(Back Propagation Neural Network, BPNN)、循环神经网络(Recurrent Neural Network, RNN)、长短期记忆神经网络(Long Short Term Memory, LSTM)、GRU及灰色关联分析-长短期记忆神经网络(Grey Relational Analysis-Long Short Term Memory, GRA-LSTM)进行对比分析,结果显示GRA-GRU在不同水质指标预测上具有较好的适应性,可以有效降低预测误差。其中,与其他模型相比,GRA-GRU预测的化学需氧量在均方根误差上分别降低了3.617%、0.681%、0.478%、1.505%和0.471%。