We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrdinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained f...We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrdinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained first-order deformed rogue wave solution, which is derived from the deformed breather solution through the Taylor expansion, is different from the known rogue wave solution of the nonlinear Schrdinger equation (NLSE). The effect of inhomogeneity is fully reflected in the variable height of the deformed soliton and the curved background of the deformed breather and rogue wave. By suitably adjusting the physical parameter, we show that a desired shape of the rogue wave can be generated. In particular, the newly constructed rogue wave can be reduced to the corresponding rogue wave of the nonlinear Schrdinger equation under a suitable parametric condition.展开更多
基金the National Natural Science Foundation of China(Grant No.10971109)K.C.Wong Magna Fund in Ningbo University,China+1 种基金the Natural Science Foundation of Ningbo,China(Grant No.2011A610179)the DST,DAE-BRNS,UGC,CSIR,India
文摘We use the 1-fold Darboux transformation (DT) of an inhomogeneous nonlinear Schrdinger equation (INLSE) to construct the deformed-soliton, breather, and rogue wave solutions explicitly. Furthermore, the obtained first-order deformed rogue wave solution, which is derived from the deformed breather solution through the Taylor expansion, is different from the known rogue wave solution of the nonlinear Schrdinger equation (NLSE). The effect of inhomogeneity is fully reflected in the variable height of the deformed soliton and the curved background of the deformed breather and rogue wave. By suitably adjusting the physical parameter, we show that a desired shape of the rogue wave can be generated. In particular, the newly constructed rogue wave can be reduced to the corresponding rogue wave of the nonlinear Schrdinger equation under a suitable parametric condition.