The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods.The nozzle-cylinder electrode in the discharge reactor was supplied witha negative nanosecond puls...The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods.The nozzle-cylinder electrode in the discharge reactor was supplied witha negative nanosecond pulsed generator.The optical emission spectrum diagnosis revealed that OH(A2∑+ → X2Π,306–309 nm),N32(CΠ→B3Πg,337 nm),O(3p5p→3s-5s-0,777.2 nm)and O(3p3p→3s3s0,844.6 nm)were produced in the discharge plasma channels.The electron temperature(Te)was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm,and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 e V.The gas temperature(Tg)that was measured by Lifbase was in a range from 400 K to 600 K.展开更多
基金supported by National Natural Science Foundation of China(Grant No.51207089)
文摘The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods.The nozzle-cylinder electrode in the discharge reactor was supplied witha negative nanosecond pulsed generator.The optical emission spectrum diagnosis revealed that OH(A2∑+ → X2Π,306–309 nm),N32(CΠ→B3Πg,337 nm),O(3p5p→3s-5s-0,777.2 nm)and O(3p3p→3s3s0,844.6 nm)were produced in the discharge plasma channels.The electron temperature(Te)was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm,and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 e V.The gas temperature(Tg)that was measured by Lifbase was in a range from 400 K to 600 K.