期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
图的区间边着色的收缩图方法
1
作者 陶艳亮 黄琼湘 陈琳 《运筹学学报》 北大核心 2019年第2期31-43,共13页
图G的一个用了颜色1,2,…,t的边着色称为区间t-着色,如果所有t种颜色都被用到,并且关联于G的同一个顶点的边上的颜色是各不相同的,且这些颜色构成了一个连续的整数区间.G称作是可区间着色的,如果对某个正整数t,G有一个区间t-着色.所有... 图G的一个用了颜色1,2,…,t的边着色称为区间t-着色,如果所有t种颜色都被用到,并且关联于G的同一个顶点的边上的颜色是各不相同的,且这些颜色构成了一个连续的整数区间.G称作是可区间着色的,如果对某个正整数t,G有一个区间t-着色.所有可区间着色的图构成的集合记作■.对图G∈■,使得G有一个区间t-着色的t的最小值和最大值分别记作ω(G)和W(G).现给出了图的区间着色的收缩图方法.利用此方法,我们对双圈图G∈■,证明了ω(G)=△(G)或△(G)+1,并且完全确定了ω(G)=△(G)及ω(G)=△(G)+1的双圈图类. 展开更多
关键词 区间边着色 收缩图 下界 双圈图
下载PDF
无穷双圈图的区间边着色的下界
2
作者 陶艳亮 《应用数学进展》 2017年第3期382-387,共6页
图G的一个用了颜色1,2,---t 的边着色称为区间,t-着色,如果所有t种颜色都被用到,并且关联于G的同一个顶点的边上的颜色是各不相同的且这些颜色构成了一个连续的整数区间。图G称为是可区间着色的,如果对某个正整数t,G有一个区间t-着色。... 图G的一个用了颜色1,2,---t 的边着色称为区间,t-着色,如果所有t种颜色都被用到,并且关联于G的同一个顶点的边上的颜色是各不相同的且这些颜色构成了一个连续的整数区间。图G称为是可区间着色的,如果对某个正整数t,G有一个区间t-着色。所有可区间着色的图构成的集合记作N。对图,使得G有一个区间t-着色的t的最小值和最大值分别记作w(G)和W(G)。本文中,我们证明了对于无穷双圈图,有。 展开更多
关键词 区间着色 下界 无穷双圈图
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部