Traditional "magic numbers" were once regarded as immutable throughout the nuclear chart. However, unexpected changes were found for unstable nuclei around N = 20. With both proton and neutron numbers around...Traditional "magic numbers" were once regarded as immutable throughout the nuclear chart. However, unexpected changes were found for unstable nuclei around N = 20. With both proton and neutron numbers around the magic number of 20, the neutron-rich ^(39)Cl isotope provides a good test case for the study of the quantumstate evolution across the major shell. In the present work, the negative parity states in ^(39)Cl are investigated through the β decay spectroscopy of 39 S. Newly observed γ transitions together with a new state are assigned into the level scheme of ^(39)Cl. The spin parity of 5/2^- for the lowest negative parity state in ^(39)Cl is reconfirmed using the combined γ transition information. These systematic observations of the negative parity states in ^(39)Cl allow a comprehensive comparison with the theoretical descriptions. The lowest 5/2^- state in ^(39)Cl remains exotic in terms of comparisons with existing theoretical calculations and with the neighboring isotopes having similar single-particle configurations. Further experimental and theoretical investigations are suggested.展开更多
Two low-lying unbound states in ^(16)C are investigated by deuteron inelastic scattering in inverse kinematics.Besides the 2^(-) state at 5.45 MeV previously measured in a 1n knockout reaction,a new resonant state at ...Two low-lying unbound states in ^(16)C are investigated by deuteron inelastic scattering in inverse kinematics.Besides the 2^(-) state at 5.45 MeV previously measured in a 1n knockout reaction,a new resonant state at 6.89 MeV is observed for the first time.The inelastic scattering angular distributions of these two states are well reproduced by the distorted-wave Born approximation(DWBA)calculation with an l=1 excitation.In addition,the spinparities of the unbound states are discussed and tentatively assigned based on shell model calculations using the modified YSOX interaction.展开更多
基金Supported by JSPS and CNRS under the Japan-France Research Cooperative Programthe Grant-in-Aid for Scientific Research on Innovative Areas"Toward new frontiers:Encounter and synergy of state-of-the-art astronomical detectors and exotic quantum beams",JSPS/MEXT KAKENHI under Grant Nos JP18HO3692 and JP18H05462+1 种基金the National Key R&D Program of China(2018YFA0404403)the National Natural Science Foundation of China Nos 11775316,11535004,11875074 and 11875073
文摘Traditional "magic numbers" were once regarded as immutable throughout the nuclear chart. However, unexpected changes were found for unstable nuclei around N = 20. With both proton and neutron numbers around the magic number of 20, the neutron-rich ^(39)Cl isotope provides a good test case for the study of the quantumstate evolution across the major shell. In the present work, the negative parity states in ^(39)Cl are investigated through the β decay spectroscopy of 39 S. Newly observed γ transitions together with a new state are assigned into the level scheme of ^(39)Cl. The spin parity of 5/2^- for the lowest negative parity state in ^(39)Cl is reconfirmed using the combined γ transition information. These systematic observations of the negative parity states in ^(39)Cl allow a comprehensive comparison with the theoretical descriptions. The lowest 5/2^- state in ^(39)Cl remains exotic in terms of comparisons with existing theoretical calculations and with the neighboring isotopes having similar single-particle configurations. Further experimental and theoretical investigations are suggested.
基金Supported by the National Key R&D Program of China(2018YFA0404403)the National Natural Science Foundation of China(11775004,U1867214,11875074,11961141003)+1 种基金the funding from the State Key Laboratory of Nuclear Physics and Technology,Peking University(NPT2021ZZ01)the funding from Heavy Ion Research Facility in Lanzhou(HIR2021PY002)。
文摘Two low-lying unbound states in ^(16)C are investigated by deuteron inelastic scattering in inverse kinematics.Besides the 2^(-) state at 5.45 MeV previously measured in a 1n knockout reaction,a new resonant state at 6.89 MeV is observed for the first time.The inelastic scattering angular distributions of these two states are well reproduced by the distorted-wave Born approximation(DWBA)calculation with an l=1 excitation.In addition,the spinparities of the unbound states are discussed and tentatively assigned based on shell model calculations using the modified YSOX interaction.