复杂干扰条件下的红外空中目标识别技术是空战对抗领域的热点研究课题,复杂人工干扰严重遮蔽目标,导致目标特征的连续性与显著性遭到破坏,无法全面描述识别对象的特性,造成空中目标识别准确率下降。针对此问题,提出一种基于图像混合深...复杂干扰条件下的红外空中目标识别技术是空战对抗领域的热点研究课题,复杂人工干扰严重遮蔽目标,导致目标特征的连续性与显著性遭到破坏,无法全面描述识别对象的特性,造成空中目标识别准确率下降。针对此问题,提出一种基于图像混合深度特征的空中目标抗干扰识别算法。首先,基于卷积神经网络进行图像深度特征的提取,将深度特征与梯度直方图(Histogram of Gradient,HOG)特征进行有效融合,构建混合深度特征。针对作战场景中的目标与干扰的对抗态势多样性,将支持向量机的二分类模型改进为三分类模型,对目标、干扰以及目标干扰粘连三种状态进行精确分类。实验结果表明:在复杂干扰环境下,基于混合深度特征的空中目标抗干扰识别算法正确率为92.29%,该算法可以有效地解决目标被干扰遮蔽、形成目标干扰粘连状态时的抗干扰识别问题。展开更多
文摘复杂干扰条件下的红外空中目标识别技术是空战对抗领域的热点研究课题,复杂人工干扰严重遮蔽目标,导致目标特征的连续性与显著性遭到破坏,无法全面描述识别对象的特性,造成空中目标识别准确率下降。针对此问题,提出一种基于图像混合深度特征的空中目标抗干扰识别算法。首先,基于卷积神经网络进行图像深度特征的提取,将深度特征与梯度直方图(Histogram of Gradient,HOG)特征进行有效融合,构建混合深度特征。针对作战场景中的目标与干扰的对抗态势多样性,将支持向量机的二分类模型改进为三分类模型,对目标、干扰以及目标干扰粘连三种状态进行精确分类。实验结果表明:在复杂干扰环境下,基于混合深度特征的空中目标抗干扰识别算法正确率为92.29%,该算法可以有效地解决目标被干扰遮蔽、形成目标干扰粘连状态时的抗干扰识别问题。