In this paper, the acoustic estimation of suspended sediment concentration is discussed and two estimation methods of suspended sediment concentration are presented. The first method is curve fitting method, in which,...In this paper, the acoustic estimation of suspended sediment concentration is discussed and two estimation methods of suspended sediment concentration are presented. The first method is curve fitting method, in which, according to the acoustic backscattering theory we assume that the fit-ting factor K1 (r) between the concentration M(r) obtained by acoustic observation and the concentra-tion M0(r) obtained by sampling water is a high order power function of distance r. Using least-square algorithm, we can determine the coefficients of the high order power function by minimizing the differ-ence between M(r) and M0(r) in the whole water profile. To the absorption coefficient of sound due to the suspension in water we do not give constraint in the first method. The second method is recur-sive fitting method, in which we take M0(r) as the conditions of initialization and decision and give ra-tional constraints to some parameters. The recursive process is stable. We analyzed the two methods with a lot of experimental data. The analytical results show that the estimate error of the first method is less than that of the second method and the latter can not only estimate the concentration of suspended sediment but also give the absorption coefficient of sound. Good results have been obtained with the two methods.展开更多
文摘In this paper, the acoustic estimation of suspended sediment concentration is discussed and two estimation methods of suspended sediment concentration are presented. The first method is curve fitting method, in which, according to the acoustic backscattering theory we assume that the fit-ting factor K1 (r) between the concentration M(r) obtained by acoustic observation and the concentra-tion M0(r) obtained by sampling water is a high order power function of distance r. Using least-square algorithm, we can determine the coefficients of the high order power function by minimizing the differ-ence between M(r) and M0(r) in the whole water profile. To the absorption coefficient of sound due to the suspension in water we do not give constraint in the first method. The second method is recur-sive fitting method, in which we take M0(r) as the conditions of initialization and decision and give ra-tional constraints to some parameters. The recursive process is stable. We analyzed the two methods with a lot of experimental data. The analytical results show that the estimate error of the first method is less than that of the second method and the latter can not only estimate the concentration of suspended sediment but also give the absorption coefficient of sound. Good results have been obtained with the two methods.