情感脑电研究作为人工智能高级阶段的重要任务,近年来受到越来越多的关注。情感脑电分类广泛应用于人机交互、医学研究等领域。该文以轻量级的卷积神经网络为核心,设计了情感脑电分类模型,以DEAP(dataset for emotion analysis using ph...情感脑电研究作为人工智能高级阶段的重要任务,近年来受到越来越多的关注。情感脑电分类广泛应用于人机交互、医学研究等领域。该文以轻量级的卷积神经网络为核心,设计了情感脑电分类模型,以DEAP(dataset for emotion analysis using physiological signals)提供的情感脑电图数据为基础,将其中的观看视频划分为唤醒度和愉悦度2个维度。为了获得频域信息,提取了theta、alpha、beta和gamma波段的功率谱密度特征进行评估,并将功率谱密度矩阵表示为二维灰度图像。然后将该图像输入到卷积神经网络训练分类模型并完成2个维度的分类任务。实验结果表明,与传统机器学习相比,卷积神经网络具有更好的分类效果,唤醒度分类准确率达到了82.33%,愉悦度分类准确率达到了75.46%。展开更多
文摘情感脑电研究作为人工智能高级阶段的重要任务,近年来受到越来越多的关注。情感脑电分类广泛应用于人机交互、医学研究等领域。该文以轻量级的卷积神经网络为核心,设计了情感脑电分类模型,以DEAP(dataset for emotion analysis using physiological signals)提供的情感脑电图数据为基础,将其中的观看视频划分为唤醒度和愉悦度2个维度。为了获得频域信息,提取了theta、alpha、beta和gamma波段的功率谱密度特征进行评估,并将功率谱密度矩阵表示为二维灰度图像。然后将该图像输入到卷积神经网络训练分类模型并完成2个维度的分类任务。实验结果表明,与传统机器学习相比,卷积神经网络具有更好的分类效果,唤醒度分类准确率达到了82.33%,愉悦度分类准确率达到了75.46%。