期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度卷积网络的运动想象脑电信号模式识别 被引量:8
1
作者 霍首君 郝琰 +2 位作者 石慧宇 董艳清 曹锐 《计算机应用》 CSCD 北大核心 2021年第4期1042-1048,共7页
针对运动想象脑电信号(MI-EEG)分类准确率普遍偏较低的问题,引入基于深度框架的卷积神经网络模型(CNN)。首先,使用短时傅里叶变换(STFT)和连续小波变换(CWT)得到两种不同解析度下的时频信息;然后将其与电极通道位置信息相结合并以三维... 针对运动想象脑电信号(MI-EEG)分类准确率普遍偏较低的问题,引入基于深度框架的卷积神经网络模型(CNN)。首先,使用短时傅里叶变换(STFT)和连续小波变换(CWT)得到两种不同解析度下的时频信息;然后将其与电极通道位置信息相结合并以三维张量的形式作为CNN的输入;其次,设计了两种基于不同卷积策略的网络模型MixedCNN和StepByStepCNN来分别对两种形式的输入进行特征提取和分类识别;最后,针对因训练集样本过少而易发生的过拟合问题,引入mixup数据增强策略。在BCI CompetitionⅡdatasetⅢ数据集上的实验结果表明,CWT得到的样本集通过mixup数据增强后送入MixedCNN网络训练出的模型的识别准确率最高(93.57%),相较于另外四种分析方法:公共空间模式(CSP)+支持向量机(SVM)、自适应自回归模型(AAR)+线性判别分析(LDA)、离散小波变换(DWT)+长短期记忆网络(LSTM)、STFT+堆栈自编码器(SAE)分别提高了19.1%、20.2%、11.7%和2.3%。所提方法可以为MI-EGG分类任务提供参考。 展开更多
关键词 脑机接口 运动想象 时频分析 卷积神经网络 数据增强 深度学习 脑电信号 模式识别
下载PDF
基于脑电信号深度学习的情感分类 被引量:6
2
作者 郝琰 石慧宇 +2 位作者 霍首君 韩丹 曹锐 《应用科学学报》 CAS CSCD 北大核心 2021年第3期347-356,共10页
情感脑电研究作为人工智能高级阶段的重要任务,近年来受到越来越多的关注。情感脑电分类广泛应用于人机交互、医学研究等领域。该文以轻量级的卷积神经网络为核心,设计了情感脑电分类模型,以DEAP(dataset for emotion analysis using ph... 情感脑电研究作为人工智能高级阶段的重要任务,近年来受到越来越多的关注。情感脑电分类广泛应用于人机交互、医学研究等领域。该文以轻量级的卷积神经网络为核心,设计了情感脑电分类模型,以DEAP(dataset for emotion analysis using physiological signals)提供的情感脑电图数据为基础,将其中的观看视频划分为唤醒度和愉悦度2个维度。为了获得频域信息,提取了theta、alpha、beta和gamma波段的功率谱密度特征进行评估,并将功率谱密度矩阵表示为二维灰度图像。然后将该图像输入到卷积神经网络训练分类模型并完成2个维度的分类任务。实验结果表明,与传统机器学习相比,卷积神经网络具有更好的分类效果,唤醒度分类准确率达到了82.33%,愉悦度分类准确率达到了75.46%。 展开更多
关键词 情感 脑电 深度学习 卷积神经网络 功率谱密度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部