期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于ICEEMDAN与支持向量机的轴承故障诊断方法 被引量:6
1
作者 王朝兵 靳福涛 +3 位作者 张龙 熊国良 颜秋宏 乔宇 《机械设计与研究》 CSCD 北大核心 2023年第3期115-120,共6页
针对DF4型机车轮对轴承不同健康状态的辨识问题,提出改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与灰狼寻优算法优化支持向量机(GWO-SVM)结合的故障识别方法。对机车轮对轴承不同故障信号利用ICEEMDAN方法分解为若干模态分量(IMF)... 针对DF4型机车轮对轴承不同健康状态的辨识问题,提出改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与灰狼寻优算法优化支持向量机(GWO-SVM)结合的故障识别方法。对机车轮对轴承不同故障信号利用ICEEMDAN方法分解为若干模态分量(IMF);根据相关系数准则将IMFs重构出典型的特征信号,并计算不同状态的特征信号在多尺度上的样本熵值,构成多尺度样本熵MSE特征向量;通过灰狼算法对SVM的核参数c和g进行全局寻优,增强SVM模型的分类性能,实现对轴承故障状态的准确识别。采用某局机务段JL-501机车轴承试验台数据验证所提模型的有效性,结果表明:ICEEMDAN-MSE与GWO-SVM结合的机车轮对轴承故障诊断方法能够准确地对轴承健康状态进行识别,准确率达96.86%;与参数自选的SVM模型和CEEMDAN-MSE+GWO-SVM等模型相比,文中所提方法的故障识别率分别提高了23.57%和3.48%。 展开更多
关键词 ICEEMDAN分解 多尺度样本熵 灰狼优化算法 支持向量机 滚动轴承
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部