Magnetic impurities in superconductors are of increasing interest due to emergent Yu-Shiba-Rusinov(YSR)states and Majorana zero modes for fault-tolerant quantum computation.However,a direct relationship between the YS...Magnetic impurities in superconductors are of increasing interest due to emergent Yu-Shiba-Rusinov(YSR)states and Majorana zero modes for fault-tolerant quantum computation.However,a direct relationship between the YSR multiple states and magnetic anisotropy splitting of quantum impurity spins remains poorly characterized.By using scanning tunneling microscopy,we systematically resolve individual transition-metal(Fe,Cr,and Ni)impurities induced YSR multiplets as well as their Zeeman effects in the K_(3)C_(60)superconductor.The YSR multiplets show identical d orbital-like wave functions that are symmetry-mismatched to the threefold K_(3)C_(60)(111)host surface,breaking point-group symmetries of the spatial distribution of YSR bound states in real space.Remarkably,we identify an unprecedented fermion-parity-preserving quantum phase transition between ground states with opposite signs of the uniaxial magnetic anisotropy that can be manipulated by an external magnetic field.These findings can be readily understood in terms of anisotropy splitting of quantum impurity spins,and thus elucidate the intricate interplay between the magnetic anisotropy and YSR multiplets.展开更多
基金financially supported by the National Key Research and Development Program of China(2022YFA1403100,2017YFA0304600)the National Natural Science Foundation of China(12141403,52388201)+1 种基金the Suzhou Science and Technology Program(SJC2021009)Nano-X from the Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),the Chinese Academy of Sciences.
文摘Magnetic impurities in superconductors are of increasing interest due to emergent Yu-Shiba-Rusinov(YSR)states and Majorana zero modes for fault-tolerant quantum computation.However,a direct relationship between the YSR multiple states and magnetic anisotropy splitting of quantum impurity spins remains poorly characterized.By using scanning tunneling microscopy,we systematically resolve individual transition-metal(Fe,Cr,and Ni)impurities induced YSR multiplets as well as their Zeeman effects in the K_(3)C_(60)superconductor.The YSR multiplets show identical d orbital-like wave functions that are symmetry-mismatched to the threefold K_(3)C_(60)(111)host surface,breaking point-group symmetries of the spatial distribution of YSR bound states in real space.Remarkably,we identify an unprecedented fermion-parity-preserving quantum phase transition between ground states with opposite signs of the uniaxial magnetic anisotropy that can be manipulated by an external magnetic field.These findings can be readily understood in terms of anisotropy splitting of quantum impurity spins,and thus elucidate the intricate interplay between the magnetic anisotropy and YSR multiplets.